We have been given a table that shows a linear relationship between x and y. We are asked to find the rate of change change of y with respect to x.
To solve our given problem, we will find the slope of the line passing through the given points.

Let us find slope of line using points
and
.




Therefore, the rate of change of y with respect to x is
.
You multiply length times width or base times height.
Answer:
mamamamamamqmama
Step-by-step explanation:
s.wmwmw
for an isosceles right triangle the legs would be 2 times the square root of the hypotenuse
so for this:
the legs would be 2sqrt(10)
Answer:
Using either method, we obtain: 
Step-by-step explanation:
a) By evaluating the integral:
![\frac{d}{dt} \int\limits^t_0 {\sqrt[8]{u^3} } \, du](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cint%5Climits%5Et_0%20%7B%5Csqrt%5B8%5D%7Bu%5E3%7D%20%7D%20%5C%2C%20du)
The integral itself can be evaluated by writing the root and exponent of the variable u as: ![\sqrt[8]{u^3} =u^{\frac{3}{8}](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bu%5E3%7D%20%3Du%5E%7B%5Cfrac%7B3%7D%7B8%7D)
Then, an antiderivative of this is: 
which evaluated between the limits of integration gives:

and now the derivative of this expression with respect to "t" is:

b) by differentiating the integral directly: We use Part 1 of the Fundamental Theorem of Calculus which states:
"If f is continuous on [a,b] then

is continuous on [a,b], differentiable on (a,b) and 
Since this this function
is continuous starting at zero, and differentiable on values larger than zero, then we can apply the theorem. That means:
