SInce the 'growth factor' is 1.32, the 'growth rate' is .32 or 32%
If the three integers are
, then we have

We can combine the fractions on the left side:


Answer: 4.3478 or 100/23
Step-by-step explanation:
Set the y values equal to each other since they are the same unknown (x). You end up with 100=23x, solve for x. Move the 23 over to the other side by using division. x=100/23. If you need it in decimal form, 100÷23=4.347826087
Segment CF is parallel to segment BE because these segments are side by side and will have the same distance continuously between them. Therefore your answer would be,
Segment BE
∠AOF is the angle that is the supplementary angle to ∠FOD because these are two angles that sum up to 180°. hence, the answer is,
∠AOF
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2