Answer:
1. t = 0.995 s
2. h = 15.92 ft
Step-by-step explanation:
First we have to look at the following formula
Vf = Vo + gt
then we work it to clear what we want
Vo + gt = Vf
gt = Vf - Vo
t = (Vf-Vo)/g
Now we have to complete the formula with the real data
Vo = 32 ft/s as the statement says
Vf = 0 because when it reaches its maximum point it will stop before starting to lower
g = -32,16 ft/s² it is a known constant, that we use it with the negative sign because it is in the opposite direction to ours
t = (0 ft/s - 32 ft/s) / -32,16 ft/s²
we solve and ...
t = 0.995 s
Now we will implement this result in the following formula to get the height at that time
h = (Vo - Vf) *t /2
h = (32 ft/s - 0 ft/s) * 0.995 s / 2
h = 32 ft/s * 0.995 s/2
h = 31.84 ft / 2
h = 15.92 ft
Answer:
Step-by-step explanation:
If you call "5x-2x^2+1" an "equation," then you must equate 5x-2x^2+1 to 0:
5x-2x^2+1 = 0
This is a quadratic equation. Rearranging the terms in descending order by powers of x, we get:
-2x^2 + 5x + 1 = 0. Here the coefficients are a = -2, b = 5 and c = 1.
Use the quadratic formula to solve for x:
First find the discriminant, b^2 - 4ac: 25 - 4(-2)(1) = 25 + 8 = 33
Because the discriminant is positive, the roots of this quadratic are real and unequal.
-b ± √(discriminant)
Applying the quadratic formula x = --------------------------------
2a
we get:
-5 ± √33 -5 + √33
x = ----------------- = --------------------- and
2(-2) -4
-5 - √33
---------------
-4
Answer:
4.68
Step-by-step explanation:
You have to find out what x is because x is an imaginary number