Answer:
No, the smallest ratio between a hypotenuse and a leg is in the 45/45/90 special case. In this case, the ratio between the hypotenuse and either legs is
√2:1
If the leg is 10 inches long, the smallest the hypotenuse can be is 10√2.
Step-by-step explanation:
<h3><u>Given</u><u>:</u><u>-</u></h3>
(√3+√2)/(√3-√2)
<h3><u>To </u><u>find</u><u>:</u><u>-</u></h3>
<u>Rationalised</u><u> form</u><u> </u><u>=</u><u> </u><u>?</u>
<h3><u>Solution</u><u>:</u><u>-</u></h3>
We have,
(√3+√2)/(√3-√2)
The denominator = √3-√2
The Rationalising factor of √3-√2 is √3+√2
On Rationalising the denominator then
=>[(√3+√2)/(√3-√2)]×[(√3+√2)/(√3+√2)]
=>[(√3+√2)(√3+√2)]×[(√3-√2)(√3+√2)]
=>(√3+√2)²/[(√3-√2)(√3+√2)]
=> (√3+√2)²/[(√3)²-(√2)²]
Since (a+b)(a-b) = a²-b²
Where , a = √3 and b = √2
=> (√3+√2)²/(3-2)
=> (√3-√2)²/1
=> (√3+√2)²
=> (√3)²+2(√3)(√2)+(√2)²
Since , (a+b)² = a²+2ab+b²
Where , a = √3 and b = √2
=> 3+2√6+2
=> 5+2√6
<h3><u>Answer:-</u></h3>
The rationalised form of (√3+√2)/(√3-√2) is 3+2√6+2.
<h3>
<u>Used formulae:-</u></h3>
→ (a+b)² = a²+2ab+b²
→ (a-b)² = a²-2ab+b²
→ (a+b)(a-b) = a²-b²
→ The Rationalising factor of √a-√b is √a+√b
Answer:
44.55
Step-by-step explanation:
9 percent of 495
Answer:
simplify x=0 is the correct answer
Let sum of 3 numbers be x.
Average of 3 numbers and 8 =

25 =

100 = x +8
x= 92.
The sum of 3 numbers is 92.