Answer:
The Riemann Sum for
with n = 4 using midpoints is about 24.328125.
Step-by-step explanation:
We want to find the Riemann Sum for
with n = 4 using midpoints.
The Midpoint Sum uses the midpoints of a sub-interval:

where 
We know that a = 4, b = 5, n = 4.
Therefore, 
Divide the interval [4, 5] into n = 4 sub-intervals of length 
![\left[4, \frac{17}{4}\right], \left[\frac{17}{4}, \frac{9}{2}\right], \left[\frac{9}{2}, \frac{19}{4}\right], \left[\frac{19}{4}, 5\right]](https://tex.z-dn.net/?f=%5Cleft%5B4%2C%20%5Cfrac%7B17%7D%7B4%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B17%7D%7B4%7D%2C%20%5Cfrac%7B9%7D%7B2%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B9%7D%7B2%7D%2C%20%5Cfrac%7B19%7D%7B4%7D%5Cright%5D%2C%20%5Cleft%5B%5Cfrac%7B19%7D%7B4%7D%2C%205%5Cright%5D)
Now, we just evaluate the function at the midpoints:




Finally, use the Midpoint Sum formula

This is the sketch of the function and the approximating rectangles.
Answer:
I miss my niece
Step-by-step explanation:
it's the meaning of that hope U get it ...
Answer: Its c
Step-by-step explanation:
Plz give brainliest
If the outer was the out of the data set it would make it “decrease”
We have 3 sides
x,3x,3x+2
P=632
x+3x+3x+2=632
7x=632-2
7x=630
x=90
3x=270
3x+2=272