Answer:
d. The interval contains only negative numbers. We cannot say at the required confidence level that one region is more interesting than the other.
Step-by-step explanation:
Hello!
You have the data of the chemical measurements in two independent regions. The chemical concentration in both regions has a Gaussian distribution.
Be X₁: Chemical measurement in region 1 (ppm)
Sample 1
n= 12
981 726 686 496 657 627 815 504 950 605 570 520
μ₁= 678
σ₁= 164
Sample mean X[bar]₁= 678.08
X₂: Chemical measurement in region 2 (ppm)
Sample 2
n₂= 16
1024 830 526 502 539 373 888 685 868 1093 1132 792 1081 722 1092 844
μ₂= 812
σ₂= 239
Sample mean X[bar]₂= 811.94
Using the information of both samples you have to determina a 90% CI for μ₁ - μ₂.
Since both populations are normal and the population variances are known, you can use a pooled standard normal to estimate the difference between the two population means.
[(X[bar]₁-X[bar]₂)±
*
]

[(678.08-811.94)±1.648*
]
[-259.49;-8.23]ppm
Both bonds of the interval are negative, this means that with a 90% confidence level the difference between the population means of the chemical measurements of region 1 and region 2 may be included in the calculated interval.
You cannot be sure without doing a hypothesis test but it may seem that the chemical measurements in region 1 are lower than the chemical measurements in region 2.
I hope it helps!
Answer:
Answer is 79 and 28
Step-by-step explanation:
Let two numbers be x and y.
x + y = 107. --> 1
x - y = 51 -->2
solving above equations,
2x = 158
x =79
y = 28
The answer is 7.41666667
Step-by-step explanation:
7 5/12= 89/12
Divide
=7.466666666667
Answer:
B. (3, -2.5)
Step-by-step explanation:
Got it Right on EDGE
Answer:
7/5
Step-by-step explanation: To find the square root of a fraction, find the square root of the top and bottom.
Please thank, hope this helps.