Answer:
64.65% probability of at least one injury commuting to work in the next 20 years
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
Each day:
Bikes to work with probability 0.4.
If he bikes to work, 0.1 injuries per year.
Walks to work with probability 0.6.
If he walks to work, 0.02 injuries per year.
20 years.
So

Either he suffers no injuries, or he suffer at least one injury. The sum of the probabilities of these events is decimal 1. So

We want
. Then

In which



64.65% probability of at least one injury commuting to work in the next 20 years
Answer:
Step-by-step explanation:
Gym A has a $150 joining fee and costs $35 per month.
Assuming that Casey wants to attend for x months, the cost of using gym A will be
150 + 35 times x months. It becomes
150 + 35x
Gym B has no joining fee and costs $60 per month.
Again, assuming that Casey wants to attend for x months, the cost of using gym B will be
60 × x months = 60x
A) To determine the number of months that it will both gym memberships to be the same, we will equate them.
150 + 35x = 60x
60x - 35x = 150
25x = 150
x = 150/25 = 6
It will take 6 months for both gym memberships to be the same.
B) If Casey plans to only go to the gym for 5 months,
Plan A will cost 150 + 35×5 = $325
Plan B will cost 60 × 5 = $300
Plan B will be cheaper
Lets try 96
4 x ?= 96
? = 96/4
= 24
So we see that 4 times 24 is close to 97.
The answer should be when X=1
Hope this helped u out if not sorry
:D