Two techniques that are used in order to restore the biodiversity are the sawing of native seeds or planting individual plants, and the reintroduction of animal species native to the ecosystem.
The restoration of the biodiversity is practically trying to get an ecosystem in its initial, pre-destruction condition, and help it function without any human assistance after certain amount of time.
All restorations of the biodiversity are hard and take time, and there's no guarantee that the outcome will be as planned and wanted. Initially, there the sawing of native seeds and planting individual plants, which is crucial as the plants are the basis of the ecosystems. After that animal species are introduced, small and large, herbivores, omnivores, and carnivores. The people initially have to assist the functioning of the ecosystem, but the idea is to make it function properly over time on its own.
Change the pH and the enzyme<span> stops working. Increasing the temperature to 60°C will cause a permanent change to the shape of the active site. This is why </span>enzymes<span> stop working when they are heated. We say they have become </span>denatured<span>.</span>
Answer:
The fate of glucose-6-phosphate,glycolytic intermediates and pentose phosphate pathways are described below
Explanation:
Fate of Glucose -6-phosphate
Glucose-6-phosphate undergo dephosphorylation to form glucose when there is an increase demand of glucose in the body.
Glucose-6-phosphate enters into pentose phosphate pathway to synthesize ribose-5-phosphate which is used during denovo pathway of purine nucleotide biosynthesis.
Fate of glycolytic intermediates
Glyceraldehyde-3-phosphate is an important intermediate of glycolysis.The glyceraldehyde-3-phosphate act as a precursor during lipogenesis that deals with the biosynthesis of triacylglycerol.
Fate of pentose phosphate pathway intermediates
Ribose-5-phosphate and NADPH are the important intermediates of pentone phosphate pathway.
Ribose-5-phosphate act as a substrate molecule during the denovo biosynthesis pathway of purine nucleotides.
NADPH act as a reducing agent during fatty acid biosynthesis process.