Answer:
A
Step-by-step explanation:

Expand parentheses:

Move all y's to one side and numbers to the other:

Divide both sides by -6. Since you are dividing both sides by a negative number, you need to flip the comparator:

Hope this helps!
Answer:
make a graphical representation for our case do we have infinite lines pass through a point M?
Step-by-step explanation:
If the graphs of the equations do not intersect (for example, if they are parallel), then there are no solutions that are true for both equations. If the graphs of the equations are the same, then there are an infinite number of solutions that are true for both equations.
√214= 14.6287388383278
Calculator maybe??
Answer:

So then the best answer for this case would be:
C. 2.78
Step-by-step explanation:
For this case we have the following probabability distribution function given:
Score P(X)
A= 4.0 0.2
B= 3.0 0.5
C= 2.0 0.2
D= 1.0 0.08
F= 0.0 0.02
______________
Total 1.00
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
If we use the definition of expected value given by:

And if we replace the values that we have we got:

So then the best answer for this case would be:
C. 2.78
15?im not sure...but I think thats right