![g(x) = x^2 - 2 \text{ is even function }](https://tex.z-dn.net/?f=g%28x%29%20%3D%20x%5E2%20-%202%20%5Ctext%7B%20is%20even%20function%20%7D)
<em><u>Solution:</u></em>
Given that,
![g(x) = x^2 - 2](https://tex.z-dn.net/?f=g%28x%29%20%3D%20x%5E2%20-%202)
We have to find whether the above function is odd or even
If a function is: y = f(x)
If f(-x) = f(x), the function is even
If f(-x) = - f(x), the function is odd
Which is,
![\mathrm{Even\:Function:\:\:A\:function\:is\:even\:if\:}f\left(-x\right)=f\left(x\right)\mathrm{\:for\:all\:}x\in \mathbb{R}\\\\\mathrm{Odd\:Function:\:\:A\:function\:is\:odd\:if\:}f\left(-x\right)=-f\left(x\right)\mathrm{\:for\:all\:}x\in \mathbb{R}](https://tex.z-dn.net/?f=%5Cmathrm%7BEven%5C%3AFunction%3A%5C%3A%5C%3AA%5C%3Afunction%5C%3Ais%5C%3Aeven%5C%3Aif%5C%3A%7Df%5Cleft%28-x%5Cright%29%3Df%5Cleft%28x%5Cright%29%5Cmathrm%7B%5C%3Afor%5C%3Aall%5C%3A%7Dx%5Cin%20%5Cmathbb%7BR%7D%5C%5C%5C%5C%5Cmathrm%7BOdd%5C%3AFunction%3A%5C%3A%5C%3AA%5C%3Afunction%5C%3Ais%5C%3Aodd%5C%3Aif%5C%3A%7Df%5Cleft%28-x%5Cright%29%3D-f%5Cleft%28x%5Cright%29%5Cmathrm%7B%5C%3Afor%5C%3Aall%5C%3A%7Dx%5Cin%20%5Cmathbb%7BR%7D)
From given,
![g(x) = x^2 - 2](https://tex.z-dn.net/?f=g%28x%29%20%3D%20x%5E2%20-%202)
Replace x with -x
![g(-x) = (-x)^2 - 2\\\\g(-x) = x^2 - 2](https://tex.z-dn.net/?f=g%28-x%29%20%3D%20%28-x%29%5E2%20-%202%5C%5C%5C%5Cg%28-x%29%20%3D%20x%5E2%20-%202)
Therefore,
![g(x) = g(-x)](https://tex.z-dn.net/?f=g%28x%29%20%3D%20g%28-x%29)
Thus the function g(x) is even
Answer:
19/4
Step-by-step explanation:
Answer:
the answer is -2 inorder to get -1 slope
Answer:
The cost of 4 medium pizzas:
4 (x - 3)
Step-by-step explanation:
#3
x = the cost of a large pizza
medium pizza costs $3 less than a large pizza. So it's x - 3
If 4 medium pizzas then it will be: 4 (x - 3)