For each <em>x</em> in the interval 0 ≤ <em>x</em> ≤ 5, the shell at that point has
• radius = 5 - <em>x</em>, which is the distance from <em>x</em> to <em>x</em> = 5
• height = <em>x</em> ² + 2
• thickness = d<em>x</em>
and hence contributes a volume of 2<em>π</em> (5 - <em>x</em>) (<em>x</em> ² + 2) d<em>x</em>.
Taking infinitely many of these shells and summing their volumes (i.e. integrating) gives the volume of the region:

Answer:
$138,345
Step-by-step explanation:
This is a compound decline problem, which will be solve by the compound formula:

Where
F is the future value (value of house at 2030, 14 years from 2016)
P is the present value ($245,000)
r is the rate of decline, in decimal (r = 4% = 4/100 = 0.04)
t is the time in years (2016 to 2030 is 14 years, so t = 14)
We substitute the known values and find F:

Rounding it up, it will be worth around $138,345 at 2030
B is true because 0-(-x) = 0 + x = x
Answer:
Group b most likely has a lower mean age of salsa students
Step-by-step explanation:
Arithmetic Mean of the data is the average of a set of numerical values, calculated by adding them together and dividing by the number of terms in the set.
Here we are given with two groups that are Group A and Group B
both having total number of students = 20
Here the mean age of the data is addition of the all ages of different students divided by total number of students.
For group a
total age of the group = 3 × 5 + 4 × 10 + 6 × 17 + 4 × 24 + 3 × 29
= 15 + 40 + 102 + 96 + 87
=340
The mean age of salsa students= 340 ÷ 20 = 17
For group b
total age of the group = 6 × 7 + 3 × 10 + 4 × 14 + 5 × 16 + 2 × 21
= 42 + 30 + 56 + 80 + 42
=250
The mean age of salsa students= 250 ÷ 20 = 12.5
So the group b most likely has a lower mean age of salsa students
Learn more about Arithmetic Mean here - brainly.com/question/24688366
#SPJ10
I dont have the * exact answer * but i got 11 or 12. Hope this helps :))