Answer
2.25
Step-by-step explanation:
Hi there,
This is the original inequality equation:

So, we first need to find the critical points of equality, and we can do that by switching the less than sign to an equal sign.

Now, we multiply both sides by x + 1:

Then, we multiply both sides by x - 1:

Next, we subtract x² from both sides:

After that, we solve for x. We do this by adding -x to both sides and dividing by 2. Doing so gives us x = 0, which is our first critical point. We need to find a few more critical points by testing x = -1 and x = 1. Here is how we do that:
<span>x = <span>−1 </span></span>(Makes left denominator equal to 0)<span>x = 1 </span>(Makes right denominator equal to 0)Check intervals in between critical points. (Test values in the intervals to see if they work.)<span>x <<span>−1 </span></span>(Doesn't work in original inequality)<span><span><span>−1 </span>< x </span><0 </span>(Works in original inequality)<span><span>0 < x </span>< 1 </span>(Doesn't work in original inequality)<span>x > 1 </span><span>(Works in original inequality)
Therefore, the answer to your query is
-1 < x < 0 or x > 1. Hope this helps and have a phenomenal day!</span>
Answer:

Step-by-step explanation:
From the question we are told that:
Function given

Co-ordinates
(x,y)=[1, 4]
Generally the second differentiation of function is mathematically given by

Therefore critical point

Generally the substitutions of co-ordinate into function is mathematically given by
For 1

For 4

For critical point 3

Therefore the maximum value of f(x) = –x2 + 6x over the interval [1, 4] is given by

Answer:
50
Step-by-step explanation:
53.042 -3.350 = 49.692---> 50
![\rightarrow z^4=-625\\\\\rightarrow z=(-625+0i)^{\frac{1}{4}}\\\\\rightarrow x+iy=(-625+0i)^{\frac{1}{4}}\\\\ x=r \cos A\\\\y=r \sin A\\\\r \cos A=-625\\\\ r \sin A=0\\\\x^2+y^2=625^{2}\\\\r^2=625^{2}\\\\|r|=625\\\\ \tan A=\frac{0}{-625}\\\\ \tan A=0\\\\ A=\pi\\\\\rightarrow z= [625(\cos (2k \pi+pi) +i \sin (2k\pi+ \pi)]^{\frac{1}{4}}\\\\k=0,1,2,3,4,....\\\\\rightarrow z=(625)^{\frac{1}{4}}[\cos \frac{(2k \pi+pi)}{4} +i \sin \frac{(2k\pi+ \pi)}{4}]](https://tex.z-dn.net/?f=%5Crightarrow%20z%5E4%3D-625%5C%5C%5C%5C%5Crightarrow%20z%3D%28-625%2B0i%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5C%5Crightarrow%20x%2Biy%3D%28-625%2B0i%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5C%20x%3Dr%20%5Ccos%20A%5C%5C%5C%5Cy%3Dr%20%5Csin%20A%5C%5C%5C%5Cr%20%5Ccos%20A%3D-625%5C%5C%5C%5C%20r%20%5Csin%20A%3D0%5C%5C%5C%5Cx%5E2%2By%5E2%3D625%5E%7B2%7D%5C%5C%5C%5Cr%5E2%3D625%5E%7B2%7D%5C%5C%5C%5C%7Cr%7C%3D625%5C%5C%5C%5C%20%5Ctan%20A%3D%5Cfrac%7B0%7D%7B-625%7D%5C%5C%5C%5C%20%5Ctan%20A%3D0%5C%5C%5C%5C%20A%3D%5Cpi%5C%5C%5C%5C%5Crightarrow%20z%3D%20%5B625%28%5Ccos%20%282k%20%5Cpi%2Bpi%29%20%2Bi%20%5Csin%20%282k%5Cpi%2B%20%5Cpi%29%5D%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5C%5C%5C%5Ck%3D0%2C1%2C2%2C3%2C4%2C....%5C%5C%5C%5C%5Crightarrow%20z%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B%282k%20%5Cpi%2Bpi%29%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B%282k%5Cpi%2B%20%5Cpi%29%7D%7B4%7D%5D%20)
![\rightarrow z_{0}=(625)^{\frac{1}{4}}[\cos \frac{pi}{4} +i \sin \frac{\pi)}{4}]\\\\\rightarrow z_{1}=(625)^{\frac{1}{4}}[\cos \frac{3\pi}{4} +i \sin \frac{3\pi}{4}]\\\\ \rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}]\\\\ \rightarrow z_{3}=(625)^{\frac{1}{4}}[\cos \frac{7\pi}{4} +i \sin \frac{7\pi}{4}]](https://tex.z-dn.net/?f=%5Crightarrow%20z_%7B0%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7Bpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B%5Cpi%29%7D%7B4%7D%5D%5C%5C%5C%5C%5Crightarrow%20z_%7B1%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B3%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B3%5Cpi%7D%7B4%7D%5D%5C%5C%5C%5C%20%5Crightarrow%20z_%7B2%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%5D%5C%5C%5C%5C%20%5Crightarrow%20z_%7B3%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B7%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B7%5Cpi%7D%7B4%7D%5D)
Argument of Complex number
Z=x+iy , is given by
If, x>0, y>0, Angle lies in first Quadrant.
If, x<0, y>0, Angle lies in Second Quadrant.
If, x<0, y<0, Angle lies in third Quadrant.
If, x>0, y<0, Angle lies in fourth Quadrant.
We have to find those roots among four roots whose argument is between 270° and 360°.So, that root is
![\rightarrow z_{2}=(625)^{\frac{1}{4}}[\cos \frac{5\pi}{4} +i \sin \frac{5\pi}{4}]](https://tex.z-dn.net/?f=%20%5Crightarrow%20z_%7B2%7D%3D%28625%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%5B%5Ccos%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%20%2Bi%20%5Csin%20%5Cfrac%7B5%5Cpi%7D%7B4%7D%5D)