Answer:
Circle D
Step-by-step explanation:
Circle A and B contain elements. We can tell because the circle only contains one type of substance. We can also conclude that A and B are probably diatomic elements. Circle C contains a compound. This leaves us with Circle D which contains a mixture as it has elements and compounds.
Answer:
25 un²
Step-by-step explanation:
5 · 5 = 25 un²
Answer:
the lowest common multiple is 60
Step-by-step explanation:
The multiples of 12 are : 12, 24, 36, 48, 60, 72, 84,
The multiples of 15 are : 15, 30, 45, 60, 75, 90, ....
60 is a common multiple (a multiple of both 12 and 15), and there are no lower common multiples.
Therefore, the lowest common multiple of 12 and 15 is 60.
3/1 is the slope of the line
In order to multiply a matrix by another matrix, we multiply the rows in the first matrix by the columns in the other matrix (How this is done is shown below)
To determine the pairs of matrices that AB=BA, we will determine AB and BA for each of the options below.
For the first option
![A= \left[\begin{array}{cc}1&0&-2&1&\end{array}\right]; B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-2%261%26%5Cend%7Barray%7D%5Cright%5D%3B%20B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%263%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
![AB= \left[\begin{array}{cc}(1\times5)+(0\times3)&(1\times0)+(0\times 2)&(-2\times5)+(1\times3)&(-2\times0)+(1\times2)&\end{array}\right]\\AB= \left[\begin{array}{cc}5+0&0+0&-10+3&0+2&\end{array}\right]\\AB = \left[\begin{array}{cc}5&0&-7&2&\end{array}\right] \\](https://tex.z-dn.net/?f=AB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%281%5Ctimes5%29%2B%280%5Ctimes3%29%26%281%5Ctimes0%29%2B%280%5Ctimes%202%29%26%28-2%5Ctimes5%29%2B%281%5Ctimes3%29%26%28-2%5Ctimes0%29%2B%281%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%2B0%260%2B0%26-10%2B3%260%2B2%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%26-7%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
and
![BA= \left[\begin{array}{cc}(5\times1)+(0\times-2)&(5\times0)+(0\times 1)&(3\times1)+(2\times-2)&(3\times0)+(1\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}5+0&0+0&3+-4&0+2&\end{array}\right]\\BA = \left[\begin{array}{cc}5&0&-1&2&\end{array}\right] \\](https://tex.z-dn.net/?f=BA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%285%5Ctimes1%29%2B%280%5Ctimes-2%29%26%285%5Ctimes0%29%2B%280%5Ctimes%201%29%26%283%5Ctimes1%29%2B%282%5Ctimes-2%29%26%283%5Ctimes0%29%2B%281%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%2B0%260%2B0%263%2B-4%260%2B2%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%26-1%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
∴ AB≠BA
For the second option
![A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]; B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-1%262%26%5Cend%7Barray%7D%5Cright%5D%3B%20B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%266%26-3%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
![AB= \left[\begin{array}{cc}(1\times3)+(0\times6)&(1\times0)+(0\times -3)&(-1\times3)+(2\times6)&(-1\times0)+(2\times-3)&\end{array}\right]\\AB= \left[\begin{array}{cc}3+0&0+0&-3+12&0+-6&\end{array}\right]\\AB = \left[\begin{array}{cc}3&0&9&-6&\end{array}\right] \\](https://tex.z-dn.net/?f=AB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%281%5Ctimes3%29%2B%280%5Ctimes6%29%26%281%5Ctimes0%29%2B%280%5Ctimes%20-3%29%26%28-1%5Ctimes3%29%2B%282%5Ctimes6%29%26%28-1%5Ctimes0%29%2B%282%5Ctimes-3%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B0%260%2B0%26-3%2B12%260%2B-6%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%269%26-6%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
and
![BA= \left[\begin{array}{cc}(3\times1)+(0\times-1)&(3\times0)+(0\times 2)&(6\times1)+(-3\times-1)&(6\times0)+(-3\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}3+0&0+0&6+3&0+-6&\end{array}\right]\\BA = \left[\begin{array}{cc}3&0&9&-6&\end{array}\right] \\](https://tex.z-dn.net/?f=BA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%283%5Ctimes1%29%2B%280%5Ctimes-1%29%26%283%5Ctimes0%29%2B%280%5Ctimes%202%29%26%286%5Ctimes1%29%2B%28-3%5Ctimes-1%29%26%286%5Ctimes0%29%2B%28-3%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B0%260%2B0%266%2B3%260%2B-6%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%269%26-6%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
Here AB = BA
For the third option
![A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]; B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-1%262%26%5Cend%7Barray%7D%5Cright%5D%3B%20B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%263%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
![AB= \left[\begin{array}{cc}(1\times5)+(0\times3)&(1\times0)+(0\times 2)&(-1\times5)+(2\times3)&(-1\times0)+(2\times2)&\end{array}\right]\\AB= \left[\begin{array}{cc}5+0&0+0&-5+6&0+4&\end{array}\right]\\AB = \left[\begin{array}{cc}5&0&1&4&\end{array}\right] \\](https://tex.z-dn.net/?f=AB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%281%5Ctimes5%29%2B%280%5Ctimes3%29%26%281%5Ctimes0%29%2B%280%5Ctimes%202%29%26%28-1%5Ctimes5%29%2B%282%5Ctimes3%29%26%28-1%5Ctimes0%29%2B%282%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%2B0%260%2B0%26-5%2B6%260%2B4%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%261%264%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
and
![BA= \left[\begin{array}{cc}(5\times1)+(0\times-1)&(5\times0)+(0\times 2)&(3\times1)+(2\times-1)&(3\times0)+(2\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}5+0&0+0&3+-2&0+4&\end{array}\right]\\BA = \left[\begin{array}{cc}5&0&1&4&\end{array}\right] \\](https://tex.z-dn.net/?f=BA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%285%5Ctimes1%29%2B%280%5Ctimes-1%29%26%285%5Ctimes0%29%2B%280%5Ctimes%202%29%26%283%5Ctimes1%29%2B%282%5Ctimes-1%29%26%283%5Ctimes0%29%2B%282%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%2B0%260%2B0%263%2B-2%260%2B4%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%261%264%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
Here also, AB=BA
For the fourth option
![A= \left[\begin{array}{cc}1&0&-2&1&\end{array}\right]; B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-2%261%26%5Cend%7Barray%7D%5Cright%5D%3B%20B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%266%26-3%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
![AB= \left[\begin{array}{cc}(1\times3)+(0\times6)&(1\times0)+(0\times -3)&(-2\times3)+(1\times6)&(-2\times0)+(1\times-3)&\end{array}\right]\\AB= \left[\begin{array}{cc}3+0&0+0&-6+6&0+-3&\end{array}\right]\\AB = \left[\begin{array}{cc}3&0&0&-3&\end{array}\right] \\](https://tex.z-dn.net/?f=AB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%281%5Ctimes3%29%2B%280%5Ctimes6%29%26%281%5Ctimes0%29%2B%280%5Ctimes%20-3%29%26%28-2%5Ctimes3%29%2B%281%5Ctimes6%29%26%28-2%5Ctimes0%29%2B%281%5Ctimes-3%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B0%260%2B0%26-6%2B6%260%2B-3%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%260%26-3%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
and
![BA= \left[\begin{array}{cc}(3\times1)+(0\times-2)&(3\times0)+(0\times 1)&(6\times1)+(-3\times-2)&(6\times0)+(-3\times1)&\end{array}\right]\\BA= \left[\begin{array}{cc}3+0&0+0&6+6&0+-3&\end{array}\right]\\BA = \left[\begin{array}{cc}3&0&12&-3&\end{array}\right] \\](https://tex.z-dn.net/?f=BA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%283%5Ctimes1%29%2B%280%5Ctimes-2%29%26%283%5Ctimes0%29%2B%280%5Ctimes%201%29%26%286%5Ctimes1%29%2B%28-3%5Ctimes-2%29%26%286%5Ctimes0%29%2B%28-3%5Ctimes1%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B0%260%2B0%266%2B6%260%2B-3%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%2612%26-3%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
Here, AB≠BA
Hence, it is only in the second and third options that AB = BA
and ![A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-1%262%26%5Cend%7Barray%7D%5Cright%5DB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%263%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
Learn more on matrices multiplication here: brainly.com/question/12755004