Let's use Gaussian elimination. Consider the augmented matrix,
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\-1 & 2 & 3 & 0 & 1 & 0\\1 & 1 & 4 & 0 & 0 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C-1%20%26%202%20%26%203%20%26%200%20%26%201%20%26%200%5C%5C1%20%26%201%20%26%204%20%26%200%20%26%200%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add row 1 to row 2, and add -1 (row 1) to row 3:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 2 & 1 & 1 & 0\\0 & 2 & 5 & -1 & 0 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%202%20%26%201%20%26%201%20%26%200%5C%5C0%20%26%202%20%26%205%20%26%20-1%20%26%200%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add -2 (row 2) to row 3:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 2 & 1 & 1 & 0\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%202%20%26%201%20%26%201%20%26%200%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add -2 (row 3) to row 2:
![\left[\begin{array}{ccc|ccc}1 & -1 & -1 & 1 & 0 & 0\\0 & 1 & 0 & 7 & 5 & -2\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%20-1%20%26%20-1%20%26%201%20%26%200%20%26%200%5C%5C0%20%26%201%20%26%200%20%26%207%20%26%205%20%26%20-2%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
• Add row 2 and row 3 to row 1:
![\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 5 & 3 & -1\\0 & 1 & 0 & 7 & 5 & -2\\0 & 0 & 1 & -3 & -2 & 1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cccc%7D1%20%26%200%20%26%200%20%26%205%20%26%203%20%26%20-1%5C%5C0%20%26%201%20%26%200%20%26%207%20%26%205%20%26%20-2%5C%5C0%20%26%200%20%26%201%20%26%20-3%20%26%20-2%20%26%201%5Cend%7Barray%7D%5Cright%5D)
So the inverse is

(3.9 * 10^33)(1.55 * 10^7)
3.9 * 1.55 = 6.045
10^33 * 10^7 = 10^40
6.045 * 10^40 <=== ur answer for the 1st one
1.6 * 10^-3 = 1.6 * 1 / 10^3 = 1.6/1000 = 0.0016 <== its probably this one...the 1.6 * 10^-3
18 kg of 15% copper and 72 kg of 60% copper should be combined by the metalworker to create 90 kg of 51% copper alloy.
<u>Step-by-step explanation:</u>
Let x = kg of 15% copper alloy
Let y = kg of 60% copper alloy
Since we need to create 90 kg of alloy we know:
x + y = 90
51% of 90 kg = 45.9 kg of copper
So we're interested in creating 45.9 kg of copper
We need some amount of 15% copper and some amount of 60% copper to create 45.9 kg of copper:
0.15x + 0.60y = 45.9
but
x + y = 90
x= 90 - y
substituting that value in for x
0.15(90 - y) + 0.60y = 45.9
13.5 - 0.15y + 0.60y = 45.9
0.45y = 32.4
y = 72
Substituting this y value to solve for x gives:
x + y = 90
x= 90-72
x=18
Therefore, in order to create 90kg of 51% alloy, we'd need 18 kg of 15% copper and 72 kg of 60% copper.
It takes them 5 hours to drive 325 miles!
Since they travel 65 miles per hour, you multiply 65 x 5 and you get 325! Hope I helped :)
Answer:
4 cups
Step-by-step explanation: