1. Find the equation of the line AB. For reference, the answer is y=(-2/3)x+2. 2. Derive a formula for the area of the shaded rectange. It is A=xy (where x is the length and y is the height). 3. Replace "y" in A=xy with the formula for y: y= (-2/3)x+2:
A=x[(-2/3)x+2] This is a formula for Area A in terms of x only. 4. Since we want to maximize the shaded area, we take the derivative with respect to x of A=x[(-2/3)x+2] , or, equivalently, A=(-2/3)x^2 + 2x. This results in (dA/dx) = (-4/3)x + 2. 5. Set this result = to 0 and solve for the critical value:
(dA/dx) = (-4/3)x + 2=0, or (4/3)x=2 This results in x=(3/4)(2)=3/2
6. Verify that this critical value x=3/2 does indeed maximize the area function. 7. Determine the area of the shaded rectangle for x=3/2, using the previously-derived formula A=(-2/3)x^2 + 2x.
The result is the max. area of the shaded rectangle.