Answer:
1) SO₄
²⁻ : (+6)
H₂S : (-2)
Explanation:
a) <u>Sulfate reducers</u> are widespread in muds and other sediments, water-logged soils, etc., environments that contain SO₄ ²⁻ and become anoxic as a result of microbial decomposition.
Sulfate (SO₄ ²⁻), the most oxidized form of sulfur (+6), <u>is reduced</u> by these
sulfate-reducing bacteria. The end product of sulfate reduction is hydrogen sulfide, H₂S, (oxidation number -2) an important natural product that participates in many biogeochemical processes. The H₂S they generate is responsible for the pungent smell (like that of rotten eggs) often encountered near coastal ecosystems. When sulfate-reducing bacteria grow, the H₂S formed from SO₄ ²⁻ reduction combines with the ferrous iron to form black, insoluble ferrous sulfide, which is not toxic. This is important for the conservation of the environment.
b) The net ionic equation under acidic conditions is:
4 H₂ + SO₄²⁻ + H⁺ → HS⁻ + 4 H₂O
Global reaction: SO₄²⁻ + 2H⁺ → H₂S + O₂
The answer is B, sodium is an element.
The activation energy of a reaction is the minimum energy that must be overcome in order for the reaction to take place. One way of reaching the activation energy is by manipulating the process conditions like pressure or temperature. But the most common method is by adding an enzyme. An enzyme speeds up the rate of the reaction but does not actively take part in it.
An analogy would be pushing heavy wooden block down a slope. No matter how many people push on it, the block won't move because of friction. But if you spill oil on the floor, the block would effortlessly move down the slope. The oil here is like an enzyme in a reaction.
Answer:
H₂ is excess reactant and O₂ the limiting reactant
Explanation:
Based on the chemical reaction:
2H₂(g) + O₂(g) → 2H₂O
<em>2 moles of H₂ react per mole of O₂</em>
<em />
To find limiting reactant we need to convert the mass of each reactant to moles:
<em>Moles H₂ -Molar mass: 2.016g/mol-:</em>
10g H₂ * (1mol / 2.016g) = 4.96 moles
<em>Moles O₂ -Molar mass: 32g/mol-:</em>
22g O₂ * (1mol / 32g) = 0.69 moles
For a complete reaction of 0.69 moles of O₂ are needed:
0.69mol O₂ * (2mol H₂ / 1mol O₂) = 1.38 moles of H₂
As there are 4.96 moles,
<h3>H₂ is excess reactant and O₂ the limiting reactant</h3>
Answer:
Yes work was done because it takes many muscles to blink. I didn't put it in a paragraph bc I already answered this once.
Explanation: