Vì tam giác ABC cân tại A (gt) mà AM là đg trung tuyến nên AM đồng thời là đg cao của t/giác đó:
AM là trung tuyến của t/giác ABC nên M là trung điểm BC:
=> BM =BC/2 =6:2=3(cm)
Xét tam giác AMB vuông tại M
AB^2 =AM^2+BM^2 ( theo định lý Py-ta -go)
Answer:
GCF(330, 75, 450, 225) = 15
Steps:
Prime factorization of the numbers:
330 = 2 × 3 × 5 × 11
75 = 3 × 5 × 5
450 = 2 × 3 × 3 × 5 × 5
225 = 3 × 3 × 5 × 5
GCF(330, 75, 450, 225)
= 3 × 5
= 15
hey man im sorry i just need points because im strugling
Step-by-step explanation:
Answer:
Solution : 
Step-by-step explanation:
![-3\left[\cos \left(\frac{-\pi }{4}\right)+i\sin \left(\frac{-\pi \:}{4}\right)\right]\:\div \:2\sqrt{2}\left[\cos \left(\frac{-\pi \:\:}{2}\right)+i\sin \left(\frac{-\pi \:\:\:}{2}\right)\right]](https://tex.z-dn.net/?f=-3%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%7D%7B4%7D%5Cright%29%2Bi%5Csin%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%7D%7B4%7D%5Cright%29%5Cright%5D%5C%3A%5Cdiv%20%5C%3A2%5Csqrt%7B2%7D%5Cleft%5B%5Ccos%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%5C%3A%7D%7B2%7D%5Cright%29%2Bi%5Csin%20%5Cleft%28%5Cfrac%7B-%5Cpi%20%5C%3A%5C%3A%5C%3A%7D%7B2%7D%5Cright%29%5Cright%5D)
Let's apply trivial identities here. We know that cos(-π / 4) = √2 / 2, sin(-π / 4) = - √2 / 2, cos(-π / 2) = 0, sin(-π / 2) = - 1. Let's substitute those values,

=
÷ 
=
÷ 
=
÷
=
÷
= 
As you can see your solution is the last option.