Answer:

Step-by-step explanation:
Look at the picture.
We have two triangles and the trapezoid.
The formula of an area of a triangle:

b - base
h - height
The formula of an area of a trapezoid:

b₁, b₂ - bases
h - height
Triangle 1:
b = 3, h = 2

Triangle 2:
b = 6, h = 1

Trapezoid:
b₁ = 7, b₂ = 9, h = 6

The area of the figure:

There are 12 Servings in one jug
Answer: C, -4
Step-by-step explanation:
Answer:
=12b^6+6b³-18b²
Step-by-step explanation:
Area=length × width
A=3b²(4b⁴+2b-6)
=12b^6+6b³-18b²
Answer:
a)z1 +z2 =z2 + z1 ...proved.
b) z1 + ( z2+ z3 )=(z1+z2)+z3 ... proved.
Step-by-step explanation:
It is given that there are three vectors z1 = a1 + ib1, z2 = a2 + ib2 and z3 = a3 + ib3. Now, we have to prove (a) z1 + z2 = z2 + z1 and (b) z1 + (z2 +z3) = (z1 + z2) + z3.
(a) z1 + z2 = (a1 +ib1) + (a2+ ib2) = (a1 +a2) + i(b1 +b2) {Adding the real and imaginary parts separately}
Again, z2 + z1 =(a2 +ib2) + (a1 +ib1) = (a2 +a1) + i(b2 +b1) {Adding the real and imaginary parts separately}
Hence, z1 +z2 =z2 + z1 {Since, (a1 +a2) = (a2 +a1) and (b1 +b2) = (b2 +b1)}
(b) z1 + ( z2+ z3 ) = [a1 + ib1] + [(a2 + a3 ) + i(b2 + b3 )] = ( a1 + a2 + a3) + i( b1+ b2+b3) {Adding the real and imaginary parts separately}
Again, (z1+z2)+z3 = [(a1+a2) +i(b1+b2)]+[a3+ib3] = ( a1 + a2 + a3) + i( b1+ b2+b3) {Adding the real and imaginary parts separately}
Hence, z1 + ( z2+ z3 )=(z1+z2)+z3 proved.