Please enclose the "nt" inside parentheses: <span>A(t)=P(1+r/n)^(nt).
Then: A = $500*(1+0.06/12)^(5*12) = $641.68</span>
Answer:
hope the attached picture gives the answers
If 0.75 cups = 20 cookies
0.375 cups = 10 cookies
1.875 cups = 50 cookies
I believe the given limit is
![\displaystyle \lim_{x\to\infty} \bigg(\sqrt[3]{3x^3+3x^2+x-1} - \sqrt[3]{3x^3-x^2+1}\bigg)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%5Cto%5Cinfty%7D%20%5Cbigg%28%5Csqrt%5B3%5D%7B3x%5E3%2B3x%5E2%2Bx-1%7D%20-%20%5Csqrt%5B3%5D%7B3x%5E3-x%5E2%2B1%7D%5Cbigg%29)
Let

Now rewrite the expression as a difference of cubes:

Then

The limit is then equivalent to

From each remaining cube root expression, remove the cubic terms:



Now that we see each term in the denominator has a factor of <em>x</em> ², we can eliminate it :


As <em>x</em> goes to infinity, each of the 1/<em>x</em> ⁿ terms converge to 0, leaving us with the overall limit,
