The correct answer for this question is this one: "c. J.J. Thompson." J. J. Thomson is the <span>scientist who designed an experiment that enabled the first successful detection of an individual subatomic particle. </span>J.J. Thomson<span> (Sir Joseph John Thomson, 1856-1940), who demonstrated in 1897 that "cathode rays" consisted of negatively-charged particles, later named electrons.</span>
Answer:
An active cell cycle in a child
Explanation:
Answer:
Each ribosomal subunit has three binding sites for tRNA: designated the A (aminoacyl) site, which accepts the incoming aminoacylated tRNA; P (peptidyl) site, which holds the tRNA with the nascent peptide chain; and E (exit) site, which holds the
Explanation:
Each ribosomal subunit has three binding sites for tRNA: designated the A (aminoacyl) site, which accepts the incoming aminoacylated tRNA; P (peptidyl) site, which holds the tRNA with the nascent peptide chain; and E (exit) site, which holds the
Answer:
The scaling exponent will be 0.75
Explanation:
According to a famous article by Max Kleiber*, the scaling of the metabolic rate or energy consumption for mammals Pmetab (measured in kcal/day) with the body mass Mb (measured in kilograms) is P metab = 70 Mb^0.75 .
What is the scaling exponent (the quantity x in a scaling law A = cMbx) for the specific metabolic rate as a function of the animal’s body mass?
he scaling of the metabolic rate or energy consumption for mammals P=kcal/day
Mb=body mass in kilograms
Comparing
P metab = 70 Mb^0.75 .
with A = cMb^x
the scaling exponent will be 0.75
metabolic rate is the energy(in kilojoule) consumed at rest. it accounts for the highest amount of energy a body consumes daily