Well, you don't have any options.
But a mixed number for 12.16 would be 12 4/25. Hope it helps! :)
Step-by-step explanation:
Hey there!
The given points are; (2,2) and (5,y).
Slope (m) =2
<u>Usi</u><u>ng</u><u> formula</u><u> for</u><u> </u><u>slope</u><u>,</u><u> </u><u>we</u><u> </u><u>get</u><u>;</u>
<u>
</u>
<u>Pu</u><u>t</u><u> all</u><u> </u><u>v</u><u>alues</u><u>.</u>
<u>
</u>
<u>Simpl</u><u>ify</u><u> </u><u>it</u><u> </u><u>to</u><u> </u><u>get</u><u> </u><u>valu</u><u>e</u><u> of</u><u>"</u><u>y</u><u>"</u><u>.</u>
<u>
</u>
<u>
</u>
<u>
</u>
<u>Therefore</u><u>,</u><u> </u><u>y</u><u>=</u><u> </u><u>8</u><u>.</u>
<em><u>Hop</u></em><em><u>e</u></em><em><u> it</u></em><em><u> helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:


Step-by-step explanation:
Let
. We have that
if and only if we can find scalars
such that
. This can be translated to the following equations:
1. 
2.
3. 
Which is a system of 3 equations a 2 variables. We can take two of this equations, find the solutions for
and check if the third equationd is fulfilled.
Case (2,6,6)
Using equations 1 and 2 we get


whose unique solutions are
, but note that for this values, the third equation doesn't hold (3+2 = 5
6). So this vector is not in the generated space of u and v.
Case (-9,-2,5)
Using equations 1 and 2 we get


whose unique solutions are
. Note that in this case, the third equation holds, since 3(3)+2(-2)=5. So this vector is in the generated space of u and v.
Answer:
Step-by-step explanation:
4 and 6