1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
boyakko [2]
3 years ago
12

There are 5000 sweets 24% blue 5% green 17% red rest are orange find percentage of orange

Mathematics
1 answer:
ss7ja [257]3 years ago
5 0

Answer: 54%

Step-by-step explanation:

24+17+5=46

100-46=54

You might be interested in
Please Helpppp!!!!! I Have no clue I forgot how to find the slope.
monitta
Answer: 2/3

Explanation: the difference between -14 and -10 is 4 and in fractions x/y. so we have 4/y. the difference between -18 and -12 is 6 so we have 4/6 but we can simplify that to 2/3.
6 0
1 year ago
Read 2 more answers
4 Tan A/1-Tan^4=Tan2A + Sin2A​
Eva8 [605]

tan(2<em>A</em>) + sin(2<em>A</em>) = sin(2<em>A</em>)/cos(2<em>A</em>) + sin(2<em>A</em>)

• rewrite tan = sin/cos

… = 1/cos(2<em>A</em>) (sin(2<em>A</em>) + sin(2<em>A</em>) cos(2<em>A</em>))

• expand the functions of 2<em>A</em> using the double angle identities

… = 2/(2 cos²(<em>A</em>) - 1) (sin(<em>A</em>) cos(<em>A</em>) + sin(<em>A</em>) cos(<em>A</em>) (cos²(<em>A</em>) - sin²(<em>A</em>)))

• factor out sin(<em>A</em>) cos(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (1 + cos²(<em>A</em>) - sin²(<em>A</em>))

• simplify the last factor using the Pythagorean identity, 1 - sin²(<em>A</em>) = cos²(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (2 cos²(<em>A</em>))

• rearrange terms in the product

… = 2 sin(<em>A</em>) cos(<em>A</em>) (2 cos²(<em>A</em>))/(2 cos²(<em>A</em>) - 1)

• combine the factors of 2 in the numerator to get 4, and divide through the rightmost product by cos²(<em>A</em>)

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - 1/cos²(<em>A</em>))

• rewrite cos = 1/sec, i.e. sec = 1/cos

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - sec²(<em>A</em>))

• divide through again by cos²(<em>A</em>)

… = (4 sin(<em>A</em>)/cos(<em>A</em>)) / (2/cos²(<em>A</em>) - sec²(<em>A</em>)/cos²(<em>A</em>))

• rewrite sin/cos = tan and 1/cos = sec

… = 4 tan(<em>A</em>) / (2 sec²(<em>A</em>) - sec⁴(<em>A</em>))

• factor out sec²(<em>A</em>) in the denominator

… = 4 tan(<em>A</em>) / (sec²(<em>A</em>) (2 - sec²(<em>A</em>)))

• rewrite using the Pythagorean identity, sec²(<em>A</em>) = 1 + tan²(<em>A</em>)

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (2 - (1 + tan²(<em>A</em>))))

• simplify

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (1 - tan²(<em>A</em>)))

• condense the denominator as the difference of squares

… = 4 tan(<em>A</em>) / (1 - tan⁴(<em>A</em>))

(Note that some of these steps are optional or can be done simultaneously)

7 0
2 years ago
How do you do this question?
Alex Ar [27]

Step-by-step explanation:

(a) dP/dt = kP (1 − P/L)

L is the carrying capacity (20 billion = 20,000 million).

Since P₀ is small compared to L, we can approximate the initial rate as:

(dP/dt)₀ ≈ kP₀

Using the maximum birth rate and death rate, the initial growth rate is 40 mil/year − 20 mil/year = 20 mil/year.

20 = k (6,100)

k = 1/305

dP/dt = 1/305 P (1 − (P/20,000))

(b) P(t) = 20,000 / (1 + Ce^(-t/305))

6,100 = 20,000 / (1 + C)

C = 2.279

P(t) = 20,000 / (1 + 2.279e^(-t/305))

P(10) = 20,000 / (1 + 2.279e^(-10/305))

P(10) = 6240 million

P(10) = 6.24 billion

This is less than the actual population of 6.9 billion.

(c) P(100) = 20,000 / (1 + 2.279e^(-100/305))

P(100) = 7570 million = 7.57 billion

P(600) = 20,000 / (1 + 2.279e^(-600/305))

P(600) = 15170 million = 15.17 billion

7 0
2 years ago
What is the slope between the points (3,1) and (4,1)
castortr0y [4]

The answer is 0.........

8 0
3 years ago
Read 2 more answers
Put the answer below.....
lana66690 [7]

Answer:

m<1= 128 degree ( being alternate angle)

m<2

= 180degree - 128degree ( being cointerior angle)

=52degree

m<3= 138degree being corresponding angle)

8 0
3 years ago
Other questions:
  • "assume x is a random variable with mean μ and standard deviation σ . find expressions for the mean and standard deviation of y
    10·1 answer
  • Which graph shows a proportional relationship between x and y?
    15·2 answers
  • Find the surface area of the pyramid shown to the nearest whole number.
    6·1 answer
  • Hi can someone plz help with #9. Thank you!!!!
    14·1 answer
  • 12x+(24x+7)=37<br><br> x=?/?<br> Help
    14·1 answer
  • Solve for r: A = 2 πrh​
    12·1 answer
  • What is the ratio of 1.6 million to 2.3 million
    15·1 answer
  • WILL MARK BRAINLIEST
    8·1 answer
  • Riley counted the number of balls on one layer of a box, 34. The box has 8 layers. How many balls can the box hold?
    14·1 answer
  • Caroline wants to compare the expressions 15-9 and 9 (-15) to determine which result is greater. How can she do this without fin
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!