Answer:
1) x = 40° & y = 50°
2) x = 100° & y = 80°
Step-by-step explanation:
1)
ABCD is a cyclic quadrilateral (∵ all the vertices of the quadrilateral are touching on the circle). As it is a cyclic quadrilateral , sum of it's opposite angles will be 180°.
⇒ ∠ADC + ∠ABC = 180°
⇒ 130° + y = 180°
⇒ y = 180 - 130 = 50°
In ΔABC ,
∠ACB = 90° (∵ AB is the diameter of the circle and a diameter subtends an angle of 90° on any point on circle.)
Using angle sum property of triangle ,
∠ABC + ∠ACB + ∠CAB = 180°
⇒ y + 90° + x = 180°
⇒ x + 50° + 90° = 180°
⇒ x + 140° = 180°
⇒ x = 180 - 140 = 40°
2)
ΔABC is an isosceles triangle (∵AB = AC). As it is an isosceles triangle , it's base angles will be equal. So , ∠ABC = ∠ACB = 50°
Using angle sum property of triangle ,
∠ABC + ∠ACB + ∠BAC = 180°
⇒ 50° + 50° + y = 180°
⇒ y + 100° = 180°
⇒ y = 180 - 100 = 80°
ABEC is a cyclic quadrilateral (∵ all the vertices of the quadrilateral are on the circle.). As it is a cyclic quadrilateral , sum of it's opposite angles will be 180°.
⇒ ∠BAC + ∠BEC = 180°
⇒ y + x = 180°
⇒ x + 80° = 180°
⇒ x = 180 - 80 = 100°
Answer:
she could be rounding the cents up
Step-by-step explanation:
Area of a circle is pi multiplied by radius squared. If radius is a, then area is pi times a squared
First term is 2 and the common difference is the value by which it increases which is 2.
Answer:
B. sen α = BC/b
Step-by-step explanation:
Las identidades trigonométricas se utilizan para resolver problemas de ángulos rectos.
En un ángulo recto, el lado al que se hace referencia como opuesto es el lado opuesto al ángulo, el lado al que se hace referencia como adyacente es el lado siguiente al ángulo (entre el ángulo y el ángulo recto) mientras que la hipotenusa es el lado más largo (opuesto al ángulo recto)
De identidades trigonométricas:
