1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natulia [17]
3 years ago
10

Y=(x) = (1/8)^x Find f(x) when x =(1/3) Round your answer to the nearest thousandth.

Mathematics
1 answer:
asambeis [7]3 years ago
5 0

Answer:

Step-by-step explanation:

y(x) = (1/8)^x

y(1/3) = (1/8)^(1/3) = 0.5

You might be interested in
Helppppppppppp please and expalin if you can
Alja [10]

Ugh, more algebra pretending to be geometry.  Why?

This is a pretty awful instance of the genre, with no units on the constant 16, assumed to be degrees.

The total arc measure in a circle is 360 degrees.  Geometry part over.

3m + 16 + 2m + 3m = 360

8m = 344

m = 344/8 = 43

Arc measures:

Arc 3m+16 = 3(43)+16 = 145°.  The angle subtended by that arc is half that, 145/2=72.5°

Arc 2m=2(43)=86°.  The angle subtended is half that, 43°

Arc 3m=3(43)=129°.  The angle subtended is half that, 64.5°

3 0
4 years ago
Use reduction of order to find a second linearly independent solution
Hoochie [10]

Given that exp(2<em>x</em>) is a solution, we assume another solution of the form

<em>y(x)</em> = <em>v(x)</em> exp(2<em>x</em>) = <em>v</em> exp(2<em>x</em>)

with derivatives

<em>y'</em> = <em>v'</em> exp(2<em>x</em>) + 2<em>v</em> exp(2<em>x</em>)

<em>y''</em> = <em>v''</em> exp(2<em>x</em>) + 4<em>v'</em> exp(2<em>x</em>) + 4<em>v</em> exp(2<em>x</em>)

Substitute these into the equation:

(2<em>x</em> + 5) (<em>v''</em> exp(2<em>x</em>) + 4<em>v'</em> exp(2<em>x</em>) + 4<em>v</em> exp(2<em>x</em>)) - 4 (<em>x</em> + 3) (<em>v'</em> exp(2<em>x</em>) + 2<em>v</em> exp(2<em>x</em>)) + 4<em>v</em> exp(2<em>x</em>) = 0

Each term contains a factor of exp(2<em>x</em>) that can be divided out:

(2<em>x</em> + 5) (<em>v''</em> + 4<em>v'</em> + 4<em>v</em>) - 4 (<em>x</em> + 3) (<em>v'</em> + 2<em>v</em>) + 4<em>v</em> = 0

Expanding and simplifying eliminates the <em>v</em> term:

(2<em>x</em> + 5) <em>v''</em> + (4<em>x</em> + 8) <em>v'</em> = 0

Substitute <em>w(x)</em> = <em>v'(x)</em> to reduce the order of the equation, and you're left with a linear ODE:

(2<em>x</em> + 5) <em>w'</em> + (4<em>x</em> + 8) <em>w</em> = 0

<em>w'</em> + (4<em>x</em> + 8)/(2<em>x</em> + 5) <em>w</em> = 0

I'll use the integrating factor method. The IF is

<em>µ(x)</em> = exp( ∫ (4<em>x</em> + 8)/(2<em>x</em> + 5) d<em>x </em>) = exp(2<em>x</em> - log|2<em>x</em> + 5|) = exp(2<em>x</em>)/(2<em>x</em> + 5)

Multiply through the ODE in <em>w</em> by <em>µ</em> :

<em>µw'</em> + <em>µ</em> (4<em>x</em> + 8)/(2<em>x</em> + 5) <em>w</em> = 0

The left side is the derivative of a product:

[<em>µw</em>]<em>'</em> = 0

Integrate both sides:

∫ [<em>µw</em>]<em>'</em> d<em>x</em> = ∫ 0 d<em>x</em>

<em>µw</em> = <em>C</em>

Replace <em>w</em> with <em>v'</em>, then integrate to solve for <em>v</em> :

exp(2<em>x</em>)/(2<em>x</em> + 5) <em>v'</em> = <em>C</em>

<em>v'</em> = <em>C</em> (2<em>x</em> + 5) exp(-2<em>x</em>)

∫ <em>v'</em> d<em>x</em> = ∫ <em>C</em> (2<em>x</em> + 5) exp(-2<em>x</em>) d<em>x</em>

<em>v</em> = <em>C₁</em> (<em>x</em> + 3) exp(-2<em>x</em>) + <em>C₂</em>

Replace <em>v</em> with <em>y</em> exp(-2<em>x</em>) and solve for <em>y</em> :

<em>y</em> exp(-2<em>x</em>) = <em>C₁</em> (<em>x</em> + 3) exp(-2<em>x</em>) + <em>C₂</em>

<em>y</em> = <em>C₁</em> (<em>x</em> + 3) + <em>C₂</em> exp(2<em>x</em>)

It follows that the second fundamental solution is <em>y</em> = <em>x</em> + 3. (The exp(2<em>x</em>) here is already accounted for as the first solution.)

3 0
3 years ago
Please help me<br> i suck at geominty
nlexa [21]
Hello!

You can use the Pythagorean Theorem to solve this.

a^{2} + b^{2} = c^{2}

c is the hypotenuse which is the side opposite of the right angle
a and b are the other sides

Put in the values you know

a^{2} + 24^{2} = 25^{2}

Square the numbers

a^{2} + 576 = 625

Subtract 576 from both sides

a^{2} = 49

Take the square root of both sides

a = 7

The answer is 7

Hope this helps!
8 0
4 years ago
What is the midpoint of (-1,-6), (-6, 5)​
kirill115 [55]
<h3>Answer:</h3><h3>-3.5,-0.5</h3>

Step-by-step explanation:

6 0
4 years ago
How many 12 inch sections can you get out of 9 foot calculator?
Citrus2011 [14]
To solve this problem, the first thing you should keep in mind is the following conversion:
 1 foot = 12 inches.
 Therefore doing the conversion:
 (12 inch) * (1 foot / 12 inch) = 1 foot.
 The number of sections is:
 N = (9 feet) / (1 foot) = 9
 Answer:
 you can get out 9, 12 inch sections of 9 foot calculator
8 0
3 years ago
Other questions:
  • A friend asks to borrow $900 for three months and agrees to pay 5% simple interest per year. How much interest will you earn in
    11·1 answer
  • (x + 6)2 - 49<br> What the answer
    5·2 answers
  • 9 miles is approximately equal to 16 km. How many km are equal to 63 miles? How many miles are equal to 48 km?
    5·1 answer
  • How do you find the minimum?
    7·2 answers
  • Natasha was thinking of a number. Natasha subtracts 16 from it and gets an answer of 18.2. What was the original number?
    12·2 answers
  • A baseball team played 32 games and lost 8 Katy was the catcher in 5/8 of the winning games and 1/4 of the losing games
    15·1 answer
  • Please help me!!!!!!!!!!!!
    6·1 answer
  • Distrubutive property 4(c+d+9)
    13·1 answer
  • The Midpoint of UV is M(4, -6). Find V given U(7, -9)
    10·1 answer
  • Daryl bought 10 adult tickets and 10 children's tickets to a zombie movie for $110. Rick bought 6 adult and 5 children tickets f
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!