So we got the real axis and the imaginary axis
we just need to find the average of the 2 points
remember
midpoint of (x1,y1) and (x2,y2) is
((x1+x2)/2,(y1+y2)/2)
so
average of 3 and -8 is -5/2
average of -5i and 2i is -3/2i
center is -5/2-3/2i
Answer:
0.1294
Step-by-step explanation:
Number of chocolates in box = 38
Number of nuts = 8
Number of caramel = 16
Number of solid chocolate = 14
Since 2 are selected in a row and not replaced, then;
Probability of first being solid chocolate = 14/38
Probability of second being solid chocolate after first one = 13/37
Thus;
P(2 selected in a row being solid chocolate) = 14/38 × 13/37 = 0.1294
Answer:
f(1)=2
Step-by-step explanation:
f(x) is 2 for all x in [-4,1]. Hence 2 is the answer
Answer:

Step-by-step explanation:
![L^{-1}[\frac{2s+4}{(s-3)^{3}} ]=](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cfrac%7B2s%2B4%7D%7B%28s-3%29%5E%7B3%7D%7D%20%5D%3D)
Using the Translation theorem to transform the s-3 to s, that means multiplying by and change s to s+3
Translation theorem:
![L^{-1}[\frac{2s+4}{(s-3)^{3}} ]=e^{3t} L^{-1}[\frac{2(s+3)+4}{s^{3}} ]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cfrac%7B2s%2B4%7D%7B%28s-3%29%5E%7B3%7D%7D%20%5D%3De%5E%7B3t%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2%28s%2B3%29%2B4%7D%7Bs%5E%7B3%7D%7D%20%5D)
Separate the fraction in a sum:
![e^{3t} L^{-1}[\frac{2s+10}{s^{3}} ]=e^{3t} L^{-1}[\frac{2s}{s^{3}}+\frac{10}{s^{3}} ]=e^{3t} (L^{-1}[\frac{2}{s^{2}}]+ L^{-1}[\frac{10}{s^{3}}])](https://tex.z-dn.net/?f=e%5E%7B3t%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2s%2B10%7D%7Bs%5E%7B3%7D%7D%20%5D%3De%5E%7B3t%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2s%7D%7Bs%5E%7B3%7D%7D%2B%5Cfrac%7B10%7D%7Bs%5E%7B3%7D%7D%20%5D%3De%5E%7B3t%7D%20%28L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%7D%7D%5D%2B%20L%5E%7B-1%7D%5B%5Cfrac%7B10%7D%7Bs%5E%7B3%7D%7D%5D%29)
The formula for this is:
![L^{-1}[\frac{n!}{s^{n+1}} ]=t^{n}](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cfrac%7Bn%21%7D%7Bs%5E%7Bn%2B1%7D%7D%20%5D%3Dt%5E%7Bn%7D)
Modify the expression to match the formula.
![e^{3t} (2L^{-1}[\frac{1}{s^{1+1}}]+ \frac{10}{2} L^{-1}[\frac{2}{s^{2+1}}])=e^{3t} (2L^{-1}[\frac{1}{s^{1+1}}]+ 5 L^{-1}[\frac{2}{s^{2+1}}])](https://tex.z-dn.net/?f=e%5E%7B3t%7D%20%282L%5E%7B-1%7D%5B%5Cfrac%7B1%7D%7Bs%5E%7B1%2B1%7D%7D%5D%2B%20%5Cfrac%7B10%7D%7B2%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%2B1%7D%7D%5D%29%3De%5E%7B3t%7D%20%282L%5E%7B-1%7D%5B%5Cfrac%7B1%7D%7Bs%5E%7B1%2B1%7D%7D%5D%2B%205%20L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%2B1%7D%7D%5D%29)
Solve
![e^{3t} (2L^{-1}[\frac{1}{s^{1+1}}]+ 5 L^{-1}[\frac{2}{s^{2+1}}])=e^{3t}(2t+5t^{2} )](https://tex.z-dn.net/?f=e%5E%7B3t%7D%20%282L%5E%7B-1%7D%5B%5Cfrac%7B1%7D%7Bs%5E%7B1%2B1%7D%7D%5D%2B%205%20L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%2B1%7D%7D%5D%29%3De%5E%7B3t%7D%282t%2B5t%5E%7B2%7D%20%29)