Cos ( 390)
- 4 cot (-45)
Csc (60)
Hope this helps
Answer:
86
Step-by-step explanation:
<u>Perimeter of WXY = WSY+WRX+XY</u>
<em>--> WSY = SY x 2</em>
--> WSY = 16 x 2 = 32
<em>Since it is an isosceles triangle, WRX = WSY</em>
--> WRX = 32
<em>--> Draw a straight line from W to XY to divide it into two halves assuming it to be point A. This would form a right angle triangle of WAX.</em>
<em>--> Solve it using the cos theta rule</em>
--> Angle = Angle X = 70°
Hypotenuse = WRX = 32
Adjacent = WA = ?
<em>--> Cos (Angle) = Adjacent/Hypotenuse</em>
Cos (70) = WA/32
WA = 10.9 rounded off to 11
--> WA=AY= 11
--> XY = WA + AY = 11+11 = 22
<em>--> Perimeter = WSY+WRX+XY</em>
Perimeter = 32+32+22
Perimeter = 86
Therefore, the perimeter of WXY is 86.
Answer:
The correct option is 4.
4) Doing two distance formulas to show that adjacent sides are not the same length.
Step-by-step explanation:
Parallelogram is a quadrilateral which has opposite sides equals and parallel. Example of a parallelogram are rhombus, rectangle, square etc.
We can prove that a quadrilateral MNOP is a parallelogram. If we find the slopes of all four sides and compare those of the opposite ends, same slopes would indicate the opposite sides are parallel, hence the quarilateral is a parallelogram. We can also find the distance of two opposing sides, and slopes of twp opposing sides to determine whether it is a parallelogram or not. The most difficult approach is that diagonals bisect each other at same point.
However, using only two distance formulas will not give us enough information to determine whether a side is parallel or not.
The appropriate choice is ...
A. 3 radians
_____
Arc length (s) is given in terms of radius (r) and central angle (θ) in radians by the formula
s = rθ
When you substitute your given information, you have
3r = rθ
Dividing by r gives
θ = 3 . . . . . . . radians