9514 1404 393
Answer:
(-3, -6)
Step-by-step explanation:
The scale factor multiplies each coordinate.
A' = 3A = 3(-1, -2) = (-3, -6)
The image of A is ...
A'(-3, -6)
Sin θ=sqrt(1-<span>cos^2 θ)
</span>sin θ=sqrt[1-(5/13)^2]
sin θ=sqrt[1-(5)^2/(13)^2]
sin θ=sqrt[1-25/169]
sin θ=sqrt[(169-25)/169]
sin θ=sqrt(144/169)
sin θ=sqrt(144)/sqrt(169)
sin θ=12/13
Answer: Second option 12/13
Answer:1.69*10^12 J
Step-by-step explanation:
From figure above, using triangle ratio
485/755.5=y/l. Cross multiplying 485l=755.5y Divide via 485) hence l= 755.5y/485
Consider a slice volume Vslice= (755.5y/485)^2∆y; recall density =150lb/ft^3
Force slice = 150*755.5^2.y^2.∆y/485^2
From figure 2 in the attachment work done for elementary sclice
Wslice= 150.755.5^2.y^2.∆y.(485-y)/485^2
= (150*755.5^2*y^2)(485-y)∆y/485
To calculate the total work we integrate from y=0 to y= 485
Ie W=[ integral of 150*755.5^2 *y^2(485-y)dy/485] at y=0 and y= 485
Integrating the above
W= 150*755.5^2/485[485*y^3/3-y^4/4] at y= 0 and y=485
W= 150*755.5^2/485(485*485^3/3-484^4/4)-(485.0^3/3-0^4/4)
Work done 1.69*10^12joules
Step-by-step explanation:
12 + 16 ÷ 4 × 5 - 8
12 + 4 × 5 - 8
12 + 20 - 8
32 - 8
24