There 7 blocks of hundreds which means each such block is equivalent to 100.
There are 5 blocks of tens, which means each such block is equivalent to 10.
There are 8 blocks of ones, which means each such block is equivalent to 1.
The total of these blocks will be = 7(100) + 5(10) + 8(10) = 758
We can make several two 3-digit numbers from these blocks. An example is listed below:
Example:
Using 3 hundred block, 2 tens blocks and 4 ones block to make one number and remaining blocks to make the other number. The remaining blocks will be 4 hundred blocks, 3 tens blocks and 4 ones blocks
The two numbers we will make in this case are:
1st number = 3(100) + 2(10) + 4(1) = 324
2nd number = 4(100) + 3(10) + 4(1) = 434
The sum of these two numbers is = 324 + 434 = 758
i.e. equal to the original sum of all blocks.
This way changing the number of blocks in each place value, different 3 digit numbers can be generated.
Step-by-step explanation:
1. -9x - 3 - 3 + 2x
-7x - 6
3. 3 - 4x - 7x - 2
-11x - 1
4. 5x - 1 + 3 + 2x
7x + 2
Answer:
It passes through the point (3,4). Given that the center of the circle is the point (0,0). We know that the equation of the circle is given by : (x-a)^2 + (y-b)^2 = r^2 where (a,b) is the center and r is the radius.
The property used to rewrite the given expression is product property.
Answer: Option A
<u>Step-by-step explanation:</u>
Given equation:

The sum of the two logarithms of two quantities (on the same basis) corresponds to the logarithm of their product on the same basis. The product log is equal to the log’s sum of the factors.

There are several rules that you can use to solve logarithmic equations. One of these guidelines is the logarithmic products rule that you can use to differentiate complex protocols in different ways. Different values that can be valuable are the quota principle and the logarithm rule. The logarithmic products rule is essential and is regularly used in analysis to control logs and simplify baseline conditions.