If the arc measures 250 degrees then the range of the central angle lies from π to 1.39π.
Given that the arc of a circle measures 250 degrees.
We are required to find the range of the central angle.
Range of a variable exhibits the lower value and highest value in which the value of particular variable exists. It can be find of a function.
We have 250 degrees which belongs to the third quadrant.
If 2π=360
x=250
x=250*2π/360
=1.39 π radians
Then the radian measure of the central angle is 1.39π radians.
Hence if the arc measures 250 degrees then the range of the central angle lies from π to 1.39π.
Learn more about range at brainly.com/question/26098895
#SPJ1
Answer:
381
Step-by-step explanation:
2,286/6=381
Good luck!
Answer:
B. {16, 19, 20}
Step-by-step explanation:
The <em>triangle inequality</em> requires for any sides a, b, c you must have ...
a + b > c
b + c > a
c + a > b
The net result of those requirements are ...
- the sum of the two shortest sides must be greater than the longest side
- the length of the third side lies between the difference and sum of the other two sides
__
If we look at the offered side length choices, we see ...
A: 8+11 = 19 . . . not > 19; not a triangle
B: 16+19 = 35 > 20; could be a triangle
C: 3+4 = 7 . . . not > 8; not a triangle
D: 5+5 = 10 . . . not > 11; not a triangle
The side lengths {16, 19, 20} could represent the sides of a triangle.
_____
<em>Additional comment</em>
The version of triangle inequality shown above ensures that a triangle will have non-zero area.
The alternative version of the triangle inequality uses ≥ instead of >. Triangles where a+b=c will look like a line segment--they will have zero area. Many authors disallow this case. (If it were allowed, then {8, 11, 19} would also be a "triangle.")