Answer: option D is the correct answer
Step-by-step explanation:
In the given sequence, the consecutive terms differ by a common difference.
The formula for determining the nth term of an arithmetic sequence is expressed as
Tn = a + (n - 1)d
Where
a represents the first term of the sequence.
d represents the common difference.
n represents the number of terms in the sequence.
From the information given,
a = - 351
d = - 343 - - 351 = - 343 + 351
d = 8
Therefore, the explicit function which defines the sequence is
f(n) = - 351 + 8(n - 1)
f(n) = 8n - 8 - 351
f(n) = 8n - 359
30 x 20=600
your answer is that he would type 600 words in 20 minutes.
Answer: x = 15, ∠K = 45.7°, ∠L = 45.7°, ∠M = 88.6°
<u>Step-by-step explanation:</u>
Since ∠K ≅ ∠L, then ΔKLM is an isoceles triangle with base KL
KM ≅ LM
3x + 23 = 7x - 37
23 = 4x - 37
60 = 4x
15 = x
KM = LM = 3x + 23
= 3(15) + 23
= 45 + 23
= 68
KL = 9x - 40
= 9(15) - 40
= 135 - 40
= 95
Next, draw a perpendicular bisector KN from K to KL. Thus, N is the midpoint of KL and ΔMNL is a right triangle.
- Since N is the midpoint of KL and KL = 95, then NL = 47.5
- Since ∠N is 90°, then NL is adjacent to ∠l and ML is the hypotenuse
Use trig to solve for ∠L (which equals ∠K):
cos ∠L = 
cos ∠L = 
∠L = cos⁻¹ 
∠L = 45.7
Triangle sum Theorem:
∠K + ∠L + ∠M = 180°
45.7 + 45.7 + ∠M = 180
91.4 + ∠M = 180
∠M = 88.6
Answer:
2.
Step-by-step explanation:
For #2, another way to word this question is: For which of the following trig functions is π/2 a solution? Well, go through them one by one. If you plug π/2 into sinθ, you get 1. This means that when x is π/2, y is 1. Try and visualize that. When y is 1, that means you moved off the x-axis; so y = sinθ is NOT one of those functions that cross the x-axis at θ = π/2. Go through the rest of them. For y = cos(π/2), you get 0. At θ = π/2, this function crosses the x-axis. For y = tanθ, your result is undefined, so that doesn't work. Keep going through them. You should see that y = secθ is undefined, y = cscθ returns 1, and y = cotθ returns 0. If you have a calculator that can handle trig functions, just plug π/2 into every one of them and check off the ones that give you zero. Graphically, if the y-value is 0, the function is touching/crossing the x-axis.
Think about what y = secθ really means. It's actually y = 1/(cosθ), right? So what makes a fraction undefined? A fraction is undefined when the denominator is 0 because in mathematics, you can't divide by zero. Calculators give you an error. So the real question here is, when is cosθ = 0? Again, you can use a calculator here, but a unit circle would be more helpful. cosθ = π/2, like we just saw in the previous problem, and it's zero again 180 degrees later at 3π/2. Now read the answer choices.
All multiples of pi? Well, our answer looked like π/2, so you can skip the first two choices and move to the last two. All multiples of π/2? Imagine there's a constant next to π, say Cπ/2 where C is any number. If we put an even number there, 2 will cut that number in half. Imagine C = 4. Then Cπ/2 = 2π. Our two answers were π/2 and 3π/2, so an even multiple won't work for us; we need the odd multiples only. In our answers, π/2 and 3π/2, C = 1 and C = 3. Those are both odd numbers, and that's how you know you only need the "odd multiples of π/2" for question 3.
we know there are 180° in π radians, how many degrees then in -3π/10 radians?
![\bf \begin{array}{ccll} degrees&radians\\ \cline{1-2} 180&\pi \\\\ x&-\frac{3\pi }{10} \end{array}\implies \cfrac{180}{x}=\cfrac{\pi }{~~-\frac{3\pi }{10}~~}\implies \cfrac{180}{x}=\cfrac{\frac{\pi}{1} }{~~-\frac{3\pi }{10}~~} \\\\\\ \cfrac{180}{x}=\cfrac{\pi }{1}\cdot \cfrac{10}{-3\pi }\implies \cfrac{180}{x}=-\cfrac{10}{3}\implies 540=-10x\implies \cfrac{540}{-10}=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill -54=x~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Bccll%7D%20degrees%26radians%5C%5C%20%5Ccline%7B1-2%7D%20180%26%5Cpi%20%5C%5C%5C%5C%20x%26-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D%20%5Cend%7Barray%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cfrac%7B%5Cpi%7D%7B1%7D%20%7D%7B~~-%5Cfrac%7B3%5Cpi%20%7D%7B10%7D~~%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B180%7D%7Bx%7D%3D%5Ccfrac%7B%5Cpi%20%7D%7B1%7D%5Ccdot%20%5Ccfrac%7B10%7D%7B-3%5Cpi%20%7D%5Cimplies%20%5Ccfrac%7B180%7D%7Bx%7D%3D-%5Ccfrac%7B10%7D%7B3%7D%5Cimplies%20540%3D-10x%5Cimplies%20%5Ccfrac%7B540%7D%7B-10%7D%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20-54%3Dx~%5Chfill)