Answer:
<em>not</em> a rectangle
Step-by-step explanation:
There are several ways to determine whether the quadrilateral is a rectangle. Computing slope is one of the more time-consuming. We can already learn that the figure is not a rectangle by seeing if the midpoint of AC is the same as that of BD. (It is not.) A+C = (-5+4, 5+2) = (-1, 7). B+D = (1-2, 8-2) = (-1, 6). (A+C)/2 ≠ (B+D)/2, so the midpoints of the diagonals are different points.
___
The slope of AB is ∆y/∆x, where the ∆y is the change in y-coordinates, and ∆x is the change in x-coordinates.
... AB slope = (8-5)/(1-(-5)) = 3/6 = 1/2
The slope of AD is computed in similar fashion.
... AD slope = (-2-5)/(-2-(-5)) = -7/3
The product of these slopes is (1/2)(-7/3) = -7/6 ≠ -1. Since the product is not -1, the segments AB and AD are not perpendicular to each other. Adjacent sides of a rectangle are perpendicular, so this figure is not a rectangle.
___
Our preliminary work with the diagonals showed us the figure was not a parallelogram (hence not a rectangle). For our slope calculation, we "magically" chose two sides that were not perpendicular. In fact, this choice was by "trial and error". Side BC <em>is perpendicular</em> to AB, so we needed to choose a different side to find one that wasn't. A graph of the points is informative, but we didn't start with that.
10^2+8^2-7^2/(2*10*8)
= 115/160 = 0.71875 round off to 0.72
Each is 147 degrees thats 1617 Total
Answer:
Correct
The solution is Sarah; The pi button on the calculator gives a more accurate representation for pi than 3.14. Using 3.14 as an approximation for pi yields a less accurate result.
Step-by-step explanation: