Answer: 4.24264069
Step-by-step explanation: I think you mean the square root?
Answer:
<h2>
![7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
</h2>
Solution,
![7( \sqrt[3]{2x} ) - 3( \sqrt[3]{16x} ) - 3( \sqrt[3]{8x} ) \\ = 7 \sqrt[3]{2x} - 3 \times ( \sqrt[3]{2 \times 2 \times 2 \times 2x} - 3 \times \sqrt[3]{2 \times 2 \times 2x} \\ = 7 \sqrt[3]{2x} - 3 \times (2 \sqrt[3]{2} x) - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 3 \times 2 \times \sqrt[3]{2x} - 3 \times 2x \\ = 7 \sqrt[3]{2x} - 6 \sqrt[3]{2x} - 6x](https://tex.z-dn.net/?f=7%28%20%5Csqrt%5B3%5D%7B2x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B16x%7D%20%29%20-%203%28%20%5Csqrt%5B3%5D%7B8x%7D%20%29%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%28%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20-%203%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%20%5Ctimes%202%20%5Ctimes%202x%7D%20%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%20%282%20%5Csqrt%5B3%5D%7B2%7D%20x%29%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%203%20%5Ctimes%202x%20%5C%5C%20%20%3D%207%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206%20%5Csqrt%5B3%5D%7B2x%7D%20%20-%206x)
Hope this helps...
Good luck on your assignment...
Answer:
C
Step-by-step explanation:
A modified box plot does not include the outliers in the whiskers, instead they are points outside of the whiskers
5,25,33,34,34,37,37,40,42,45,45,46,46,49,73
This data has 2 outliers 5 and 73 so we have 2 choices for a modified box plot D or D
The lowest value outside of the outliers is 25 , so C would be the logical choice
D has the lower end of the whisker too close to the outlier
Given:
y varies directly with x,
It is given that y = 7 when x = -9.
To find:
The value of y when x = 27 for the direct variation.
Solution:
It is given that y varies directly with x, so

...(i)
Where, k is the constant of proportionality.
It is given that y = 7 when x = -9. Putting these values in (i), we get
Putting
in (i), we get

Putting
, we get


Therefore, the required value is
.