Answer:
D. multiplication property
Step-by-step explanation
Am not so sure but i think its that
Answer:Answer:

Step-by-step explanation:
Given the sequence -4,-6,-8..., in order to get sigma notation to represent the sum of the first seven terms of the sequence, we need to first calculate the sum of the first seven terms of the sequence as shown;
The sum of an arithmetic series is expressed as ![S_n = \frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
n is the number of terms
a is the first term of the sequence
d is the common difference
Given parameters
n = 7, a = -4 and d = -6-(-4) = -8-(-6) = -2
Required
Sum of the first seven terms of the sequence
![S_7 = \frac{7}{2}[2(-4)+(7-1)(-2)]\\\\S_7 = \frac{7}{2}[-8+(6)(-2)]\\\\S_7 = \frac{7}{2}[-8-12]\\\\\\S_7 = \frac{7}{2} * -20\\\\S_7 = -70](https://tex.z-dn.net/?f=S_7%20%3D%20%5Cfrac%7B7%7D%7B2%7D%5B2%28-4%29%2B%287-1%29%28-2%29%5D%5C%5C%5C%5CS_7%20%3D%20%20%5Cfrac%7B7%7D%7B2%7D%5B-8%2B%286%29%28-2%29%5D%5C%5C%5C%5CS_7%20%3D%20%20%5Cfrac%7B7%7D%7B2%7D%5B-8-12%5D%5C%5C%5C%5C%5C%5CS_7%20%3D%20%5Cfrac%7B7%7D%7B2%7D%20%2A%20-20%5C%5C%5C%5CS_7%20%3D%20-70)
The sum of the nth term of the sequence will be;
![S_n = \frac{n}{2}[2(-4)+(n-1)(-2)]\\\\S_n = \frac{n}{2}[-8+(-2n+2)]\\\\S_n = \frac{n}{2}[-6-2n]\\\\S_n = \frac{-6n}{2} - \frac{2n^2}{2}\\S_n = -3n-n^2\\\\S_n = -n(3+n)](https://tex.z-dn.net/?f=S_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B2%28-4%29%2B%28n-1%29%28-2%29%5D%5C%5C%5C%5CS_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B-8%2B%28-2n%2B2%29%5D%5C%5C%5C%5CS_n%20%3D%20%5Cfrac%7Bn%7D%7B2%7D%5B-6-2n%5D%5C%5C%5C%5CS_n%20%3D%20%20%5Cfrac%7B-6n%7D%7B2%7D%20-%20%20%5Cfrac%7B2n%5E2%7D%7B2%7D%5C%5CS_n%20%3D%20-3n-n%5E2%5C%5C%5C%5CS_n%20%3D%20-n%283%2Bn%29)
The sigma notation will be expressed as
. <em>The limit ranges from 1 to 7 since we are to find the sum of the first seven terms of the series.</em>
Answer:
, where a be a constant.
Step-by-step explanation:
Note: The given functions is a constant function because variable term is missing.
Consider the given function is

where a be a constant.
We need to find the derivative of the function.
Differentiate with respect to x.


![[\because \dfrac{d}{dx}(e^x)=e^x]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Cdfrac%7Bd%7D%7Bdx%7D%28e%5Ex%29%3De%5Ex%5D)



Therefore, the derivative of the function is
.