Answer:
72.73
Step-by-step explanation:
Answer:
2.28% of tests has scores over 90.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What proportion of tests has scores over 90?
This proportion is 1 subtracted by the pvalue of Z when X = 90. So



has a pvalue of 0.9772.
So 1-0.9772 = 0.0228 = 2.28% of tests has scores over 90.
Answer:
The relation is not a function
The domain is {1, 2, 3}
The range is {3, 4, 5}
Step-by-step explanation:
A relation of a set of ordered pairs x and y is a function if
- Every x has only one value of y
- x appears once in ordered pairs
<u><em>Examples:</em></u>
- The relation {(1, 2), (-2, 3), (4, 5)} is a function because every x has only one value of y (x = 1 has y = 2, x = -2 has y = 3, x = 4 has y = 5)
- The relation {(1, 2), (-2, 3), (1, 5)} is not a function because one x has two values of y (x = 1 has values of y = 2 and 5)
- The domain is the set of values of x
- The range is the set of values of y
Let us solve the question
∵ The relation = {(1, 3), (2, 3), (3, 4), (2, 5)}
∵ x = 1 has y = 3
∵ x = 2 has y = 3
∵ x = 3 has y = 4
∵ x = 2 has y = 5
→ One x appears twice in the ordered pairs
∵ x = 2 has y = 3 and 5
∴ The relation is not a function because one x has two values of y
∵ The domain is the set of values of x
∴ The domain = {1, 2, 3}
∵ The range is the set of values of y
∴ The range = {3, 4, 5}
Answer:
Step-by-step explanation:
(A) The difference between an ordinary differential equation and an initial value problem is that an initial value problem is a differential equation which has condition(s) for optimization, such as a given value of the function at some point in the domain.
(B) The difference between a particular solution and a general solution to an equation is that a particular solution is any specific figure that can satisfy the equation while a general solution is a statement that comprises all particular solutions of the equation.
(C) Example of a second order linear ODE:
M(t)Y"(t) + N(t)Y'(t) + O(t)Y(t) = K(t)
The equation will be homogeneous if K(t)=0 and heterogeneous if 
Example of a second order nonlinear ODE:

(D) Example of a nonlinear fourth order ODE:
![K^4(x) - \beta f [x, k(x)] = 0](https://tex.z-dn.net/?f=K%5E4%28x%29%20-%20%5Cbeta%20f%20%5Bx%2C%20k%28x%29%5D%20%3D%200)
Shouldn't this be in the language section? But okay. I would say the simple subject would be "plane"