1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxMikexx [17]
2 years ago
7

85 is what percent of 170?

Mathematics
2 answers:
natta225 [31]2 years ago
5 0
121.4285%
Hope this helped
Dmitry_Shevchenko [17]2 years ago
5 0

Answer: 144.5

Step-by-step explanation:

85 of 170 can be wriiten as:

85

170

Multiply both numerator & denominator by 100


85

170

×

100

100

=

50

100

= 50%

If you are using a calculator, simply enter 85÷170×100 which will give you 50 as the answer.


Small suggestion: Do these problems to get your brain working!

Problems: 65% of 43 , 53% of 62 , 73% of 52, etc.

You might be interested in
Solve irrational equation pls
rusak2 [61]
\hbox{Domain:}\\
x^2+x-2\geq0 \wedge x^2-4x+3\geq0 \wedge x^2-1\geq0\\
x^2-x+2x-2\geq0 \wedge x^2-x-3x+3\geq0 \wedge x^2\geq1\\
x(x-1)+2(x-1)\geq 0 \wedge x(x-1)-3(x-1)\geq0 \wedge (x\geq 1 \vee x\leq-1)\\
(x+2)(x-1)\geq0 \wedge (x-3)(x-1)\geq0\wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\
x\in(-\infty,-2\rangle\cup\langle1,\infty) \wedge x\in(-\infty,1\rangle \cup\langle3,\infty) \wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\
x\in(-\infty,-2\rangle\cup\langle3,\infty)



\sqrt{x^2+x-2}+\sqrt{x^2-4x+3}=\sqrt{x^2-1}\\
x^2-1=x^2+x-2+2\sqrt{(x^2+x-2)(x^2-4x+3)}+x^2-4x+3\\
2\sqrt{(x^2+x-2)(x^2-4x+3)}=-x^2+3x-2\\
\sqrt{(x^2+x-2)(x^2-4x+3)}=\dfrac{-x^2+3x-2}{2}\\
(x^2+x-2)(x^2-4x+3)=\left(\dfrac{-x^2+3x-2}{2}\right)^2\\
(x+2)(x-1)(x-3)(x-1)=\left(\dfrac{-x^2+x+2x-2}{2}\right)^2\\
(x+2)(x-3)(x-1)^2=\left(\dfrac{-x(x-1)+2(x-1)}{2}\right)^2\\
(x+2)(x-3)(x-1)^2=\left(\dfrac{-(x-2)(x-1)}{2}\right)^2\\
(x+2)(x-3)(x-1)^2=\dfrac{(x-2)^2(x-1)^2}{4}\\
4(x+2)(x-3)(x-1)^2=(x-2)^2(x-1)^2\\

4(x+2)(x-3)(x-1)^2-(x-2)^2(x-1)^2=0\\
(x-1)^2(4(x+2)(x-3)-(x-2)^2)=0\\
(x-1)^2(4(x^2-3x+2x-6)-(x^2-4x+4))=0\\
(x-1)^2(4x^2-4x-24-x^2+4x-4)=0\\
(x-1)^2(3x^2-28)=0\\
x-1=0 \vee 3x^2-28=0\\
x=1 \vee 3x^2=28\\
x=1 \vee x^2=\dfrac{28}{3}\\
x=1 \vee x=\sqrt{\dfrac{28}{3}} \vee x=-\sqrt{\dfrac{28}{3}}\\

There's one more condition I forgot about
-(x-2)(x-1)\geq0\\
x\in\langle1,2\rangle\\

Finally
x\in(-\infty,-2\rangle\cup\langle3,\infty) \wedge x\in\langle1,2\rangle \wedge x=\{1,\sqrt{\dfrac{28}{3}}, -\sqrt{\dfrac{28}{3}}\}\\
\boxed{\boxed{x=1}}
3 0
2 years ago
There are five tests in a grading period. A student received grades of 98, 80, and 90, 96 on the first four tests. What grade mu
inn [45]

Answer:

80

Step-by-step explanation:

The median of the group is 80

If you add all the five numbers up they equal 454 divide by 5 the answer would be 90.8

3 0
3 years ago
A simple random sample of size nequals81 is obtained from a population with mu equals 83 and sigma equals 27. ​(a) Describe the
Ivanshal [37]

Answer:

a) \bar X \sim N (\mu, \frac{\sigma}{\sqrt{n}})

With:

\mu_{\bar X}= 83

\sigma_{\bar X}=\frac{27}{\sqrt{81}}= 3

b) z= \frac{89-83}{\frac{27}{\sqrt{81}}}= 2

P(Z>2) = 1-P(Z

c) z= \frac{75.65-83}{\frac{27}{\sqrt{81}}}= -2.45

P(Z

d) z= \frac{89.3-83}{\frac{27}{\sqrt{81}}}= 2.1

z= \frac{79.4-83}{\frac{27}{\sqrt{81}}}= -1.2

P(-1.2

Step-by-step explanation:

For this case we know the following propoertis for the random variable X

\mu = 83, \sigma = 27

We select a sample size of n = 81

Part a

Since the sample size is large enough we can use the central limit distribution and the distribution for the sampel mean on this case would be:

\bar X \sim N (\mu, \frac{\sigma}{\sqrt{n}})

With:

\mu_{\bar X}= 83

\sigma_{\bar X}=\frac{27}{\sqrt{81}}= 3

Part b

We want this probability:

P(\bar X>89)

We can use the z score formula given by:

z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}

And if we find the z score for 89 we got:

z= \frac{89-83}{\frac{27}{\sqrt{81}}}= 2

P(Z>2) = 1-P(Z

Part c

P(\bar X

We can use the z score formula given by:

z = \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}

And if we find the z score for 75.65 we got:

z= \frac{75.65-83}{\frac{27}{\sqrt{81}}}= -2.45

P(Z

Part d

We want this probability:

P(79.4 < \bar X < 89.3)

We find the z scores:

z= \frac{89.3-83}{\frac{27}{\sqrt{81}}}= 2.1

z= \frac{79.4-83}{\frac{27}{\sqrt{81}}}= -1.2

P(-1.2

8 0
3 years ago
What is the supplementary angle to an angle that has 112 degrees?
olga55 [171]
Supplementary means they add up to 180°.
180-112= 68
The answer is 68°
7 0
3 years ago
Identify the zeros of the function f(x) = 4x2 − 8x − 1 using the Quadratic Formula. HELP ASAP!!
forsale [732]

1+\dfrac{\sqrt{5}}{2},1-\dfrac{\sqrt{5}}{2}

Step-by-step explanation:

The given equation is 4x^{2}-8x-1

Let a be the coefficient of x^{2}

Let b be the coefficient of x

Let c be the constant.

Then the roots α,β for the equation ax^{2}+bx+c are \dfrac{-b+\sqrt{b^{2}-4ac} }{2a},\dfrac{-b-\sqrt{b^{2}-4ac} }{2a}

So,α=\frac{-b+\sqrt{b^{2}-4ac} }{2a}=\frac{8+\sqrt{64+16} }{8}=\frac{8+4\sqrt{5}}{8}=1+\frac{\sqrt{5}}{2}

β=\frac{-b-\sqrt{b^{2}-4ac} }{2a}=\frac{8-\sqrt{64+16} }{8}=\frac{8-4\sqrt{5}}{8}=1-\frac{\sqrt{5}}{2}.

So the roots are 1+\frac{\sqrt{5}}{2},1+\frac{\sqrt{5}}{2}

5 0
3 years ago
Other questions:
  • Solve for x
    13·1 answer
  • Use the formula S = 40,000 (1.06)t to calculate your salary after 4 years. Round your answer to the nearest dollar.
    11·1 answer
  • What is7 times 500 using compatible numbers
    6·1 answer
  • What do a rectangle and a rhombus have in common? Select all that apply. The opposite sides are parallel. They have four right a
    15·1 answer
  • What is 5.6+2.2x&gt;65.6-1.8x
    8·2 answers
  • The circular ring of the fountain has a radius of 9 feet. What is the area of the ring?
    11·1 answer
  • How to evaluate -4/5+7/15
    7·2 answers
  • PLEASE HELP QUICK!! I NEED IT ASAP 3.
    7·2 answers
  • Find the area of the shaded region.
    5·2 answers
  • I think of a number multiply it by 3 and subtract 4 i get 32 what was the number help pleaseeee
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!