1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreas93 [3]
3 years ago
11

Question 9: Please help, what would be the length of the image of the segment GH?

Mathematics
2 answers:
juin [17]3 years ago
5 0

Answer: 0.5

Step-by-step explanation:

shepuryov [24]3 years ago
3 0

Answer:

<u><em></em></u>

  • <u><em>The length of the image of the segment GH would be 5 units.</em></u>

Explanation:

You can use the <em>center of dilation</em> as your origin of coordintes.

Thus, the <em>point H</em> would have coordinates (0,0) and the <em>point G</em> (-1,0).

A <em>dilation</em> multiplies the coordinates by the <em>scale factor</em>. Hence:

  • H = (0,0) → H' = 5 × (0,0) = (0,0)
  • G = (-1,0) → G] = 5 × (-1, 0) = (-5, 0)

Thus, the length of the image of segment GH would be the distance from 0 to -5 in a number line, which is 5.

You might be interested in
Last Friday joe had $7. Over the weekend he received some money for a good report card.he now has $20. How much money did he rec
Vinil7 [7]

Answer:13$

Step-by-step explanation:

20-7=13

4 0
3 years ago
Read 2 more answers
A light bulb is designed by revolving the graph of:
nadya68 [22]

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

5 0
3 years ago
Which equation represents a line that passes through (-9, -3) and has a slope of -6?
eimsori [14]

Answer:

D

Step-by-step explanation:

The equation of a line in point- slope form is

y - b = m(x - a)

where m is the slope and (a, b) a point on the line

here m = - 6 and (a, b) = (- 9, - 3), so

y - (- 3) = - 6(x - (- 9)), that is

y + 3 = - 6(x + 9)

8 0
3 years ago
Read 2 more answers
A group of 40 children attend a baseball game. Each child received either a hotdog or a bag of popcorn. Hotdogs were $2.25 and p
lions [1.4K]

Answer:

  • 27 hot dogs
  • 13 bags of popcorn

Step-by-step explanation:

Had all received popcorn, the bill would have been 40×$1.75 = $70. The bill was $13.50 more than that. Each hot dog purchased in place of popcorn adds $0.50 to the bill, so the number of hot dogs must be ...

  $13.50/$0.50 = 27

Of course, the remainder of the 40 items were popcorn, so 13 bags of popcorn.

27 hot dogs and 13 bags of popcorn were purchased.

8 0
3 years ago
I don't understand no this at all​
Katena32 [7]

Answer:

Just get the perimeter of the smaller rectangle then times it by 4

Step-by-step explanation:

i tried to use a calculator but i cant do the perimeter of the smaller triangle because i dont know what x is sorry ill try to figure it out.

8 0
3 years ago
Other questions:
  • The question is in the picture.
    11·1 answer
  • Derek bought 4 pounds of tomatoes at the grocery store. This included grape, roma, and plum tomatoes. If Derek bought 2 pounds o
    10·2 answers
  • an integrated circuit voltage of 0.9 volts decreases by 0.2 volts per second how long does it take to reach a voltage of 0.3 vol
    11·1 answer
  • A bucket contains five green tennis balls, two yellow tennis balls, six red tennis balls, and eight blue tennis balls. Tony remo
    9·1 answer
  • Give. b(x) = |x + 4| what is b(-10)
    6·2 answers
  • Simplify each expression. Use only positive exponents. <br><br> (Photo)
    5·1 answer
  • How do I find the answer
    9·2 answers
  • The girls in Lana’s troop set a goal to sell 1,000 boxes of cookies this year. There are 13 girls in the troop. At least how man
    11·2 answers
  • Noah was playing with his wooden blocks and created a house.
    7·2 answers
  • Please help me
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!