7 times 0.45 divided by 5 and you get 0.63
Answer:
Infinite pairs of numbers
1 and -1
8 and -8
Step-by-step explanation:
Let x³ and y³ be any two real numbers. If the sum of their cube roots is zero, then the following must be true:
![\sqrt[3]{x^3}+ \sqrt[3]{y^3}=0\\ \sqrt[3]{x^3}=- \sqrt[3]{y^3}\\x=-y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E3%7D%2B%20%5Csqrt%5B3%5D%7By%5E3%7D%3D0%5C%5C%20%5Csqrt%5B3%5D%7Bx%5E3%7D%3D-%20%5Csqrt%5B3%5D%7By%5E3%7D%5C%5Cx%3D-y)
Therefore, any pair of numbers with same absolute value but different signs fit the description, which means that there are infinite pairs of possible numbers.
Examples: 1 and -1; 8 and -8; 27 and -27.
The correct question is
<span>
Penelope determined the solutions of the quadratic function by completing the square.f(x) = 4x² + 8x + 1
–1 = 4x² + 8x
–1 = 4(x² + 2x)
–1 + 1 = 4(x² + 2x + 1)
0 = 4(x + 2)²
0 = (x + 2)²
0 = x + 2
–2 = x
What error did Penelope make in her work?
we have that
</span>f(x) = 4x² + 8x + 1
to find the solutions of the quadratic function
let
f(x)=0
4x² + 8x + 1=0
Group terms that contain the same variable, and move the
constant to the opposite side of the equation
(4x² + 8x)=-1
Factor the
leading coefficient
4*(x² + 2x)=-1
Complete the square Remember to balance the equation
by adding the same constants to each side.
4*(x² + 2x+1)=-1+4 --------> ( added 4 to both sides)
Rewrite as perfect squares
4*(x+1)²=3
(x+1)²=3/4--------> (+/-)[x+1]=√3/2
(+)[x+1]=√3/2---> x1=(√3/2)-1----> x1=(√3-2)/2
(-)[x+1]=√3/2----> x2=(-2-√3)/2
therefore
the answer is
<span>
Penelope should have added 4 to both sides instead of adding 1.</span>
Answer:
I dont understand that sorry
Answer: 
Step-by-step explanation:
You need to analize all the information given in the exercise.
You know that the actual height of the T-rex on the projector lens is the following:

The height of the projected T-rex is:

Make the conversion from meters to centimeters:

Therefore, the scale factor will be:

Finally, you must substitute values into the equation and then you must evaluate in order to find the scale factor of the projection. You get that this is:
