70/6 × 18/4
70 * 18/6*4. cross out 18 and 6.
= 70*3/4
= 35 * 2 * 3/ 2*2
= 35*3/2
= 105/2
= 52.5
OR
52 1/2.
Answer:
X= 8
Y= 130
(8, 130)
Step-by-step explanation:
I used a graphing calculator to see where the two equations intersected.
Hope this helped :)
Step-by-step explanation:
sol;
x+1=y...(1)
3y-7=2x....(2)
or, 3(x+1)-72x [from (1)]
or, 3x+3-7=2x
or, 3x-2x=7-3
x=4
now,
putting the value of x in (1)
y=x+1
=4+1
=5
PR and SQ are the diagonal of PQRS.
Answer:
Step-by-step explanation:
We can use the distance formula derived from the Pythagorean theorem
D = 
the two points given are
(0, 3) and (-2, -3)

Complete question :
Suppose that of the 300 seniors who graduated from Schwarzchild High School last spring, some have jobs, some are attending college, and some are doing both. The following Venn diagram shows the number of graduates in each category. What is the probability that a randomly selected graduate has a job if he or she is attending college? Give your answer as a decimal precise to two decimal places.
What is the probability that a randomly selected graduate attends college if he or she has a job? Give your answer as a decimal precise to two decimal places.
Answer:
0.56 ; 0.60
Step-by-step explanation:
From The attached Venn diagram :
C = attend college ; J = has a job
P(C) = (35+45)/300 = 80/300 = 8/30
P(J) = (30+45)/300 = 75/300 = 0.25
P(C n J) = 45 /300 = 0.15
1.)
P(J | C) = P(C n J) / P(C)
P(J | C) = 0.15 / (8/30)
P(J | C) = 0.5625 = 0.56
2.)
P(C | J) = P(C n J) / P(J)
P(C | J) = 0.15 / (0.25)
P(C | J) = 0.6 = 0.60