Answer:
Step-by-step explanation:
\mathrm{Multiply\:the\:numerator\:and\:denominator\:by:}\:100
\mathrm{Multiply\:the\:quotient\:digit}\:\left(0\right)\:\mathrm{by\:the\:divisor}\:505
\mathrm{Subtract}\:0\:\mathrm{from}\:23
Answer:120in
Step-by-step explanation:
..... 40.5 ...............
Similar polygons only differ by a scaling factor. In other words, two polygons are similar if one is the scaled version of the other.
In particular, this implies that the angles are preserved, and the correspondent sides are in proportion.
These two polygons are both rectangles, so the angles are preserved. We must check the sides, and we have to check if the smaller sides are in the same proportion as the bigger sides.
So, the two rectangles are similar if the following is true.

In any proportion, the product of the inner terms must be the same as the product of the outer terms:

This is clearly false, and thus the two rectangles are not similar.
Answer:
Step-by-step explanation:
4) parallel because 118° is a supplement to 62° and the corresponding angles are both 118°
5) NOT parallel. The labeled angles sum to 120° and would sum to 180° for parallel lines.
6) NOT parallel. see pic.
If parallel, extending a line to intersect ℓ₁ makes an opposite internal angle which would also be 48°. The created triangle would have its third angle at 180 - 90 - 48 = 42° which is opposite a labeled 48° angle, which is false, so the lines cannot be parallel
7)
b = 78° as it corresponds with a labeled angle above it
a = 180 - 78 = 102° as angles along a line from a common vertex sum to 180
f = is an opposite angle to 180 - 78 - 44 = 58° as angles along a line from a common vertex sum to 180
e = 180 - 90 - 64 = 26° as angles along a line from a common vertex sum to 180
c = 58° as it corresponds with f
d = 180 - 58 = 122° as angles along a line from a common vertex sum to 180