1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
3 years ago
12

I said 1000 divvied by 440 is 2.12 I got this wrong. I have to correct for homework. What did I do wrong and how can I solve it

right?
Mathematics
1 answer:
fgiga [73]3 years ago
5 0
Hello there,
Unfortunately, this is incorrect. 1000÷440 is a decimal number, which is 2.27272727. When you round, it will either be 2, 2.3, or 2.27.

Hope this helps!!
You might be interested in
The value of all of the quarters and dimes in a parking meter is $6. There are twice as many quarters as dimes. What is the tota
Leni [432]

Answer:

subject?

Step-by-step explanation:

4 0
3 years ago
How do you do this? It's geometry
antiseptic1488 [7]
45.

12/18 = 8/x <=> 2/3 = 8/x <=> x = (3*8)/2 = 12;
7 0
3 years ago
YO!NEED THIS!!!!!POINTS!!!!!!WILL GIVE THE BRAIN!!!!
DiKsa [7]
The graph is falling on the left hand side and rising on the right hand side.

Since the two ends of graph are in opposite direction, the exponent of variable has to be odd. For an even exponent of leading term, the two ends are in same direction.

Since the graph is falling on left and rising on right, this indicates that the coefficient of leading term is positive.

So, the leading term must have:
1) Odd exponent
2) Positive Coefficient

Thus, option Fourth is the correct answer


5 0
3 years ago
If a,b,c and d are positive real numbers such that logab=8/9, logbc=-3/4, logcd=2, find the value of logd(abc)
Eva8 [605]

We can expand the logarithm of a product as a sum of logarithms:

\log_dabc=\log_da+\log_db+\log_dc

Then using the change of base formula, we can derive the relationship

\log_xy=\dfrac{\ln y}{\ln x}=\dfrac1{\frac{\ln x}{\ln y}}=\dfrac1{\log_yx}

This immediately tells us that

\log_dc=\dfrac1{\log_cd}=\dfrac12

Notice that none of a,b,c,d can be equal to 1. This is because

\log_1x=y\implies1^{\log_1x}=1^y\implies x=1

for any choice of y. This means we can safely do the following without worrying about division by 0.

\log_db=\dfrac{\ln b}{\ln d}=\dfrac{\frac{\ln b}{\ln c}}{\frac{\ln d}{\ln c}}=\dfrac{\log_cb}{\log_cd}=\dfrac1{\log_bc\log_cd}

so that

\log_db=\dfrac1{-\frac34\cdot2}=-\dfrac23

Similarly,

\log_da=\dfrac{\ln a}{\ln d}=\dfrac{\frac{\ln a}{\ln b}}{\frac{\ln d}{\ln b}}=\dfrac{\log_ba}{\log_bd}=\dfrac{\log_db}{\log_ab}

so that

\log_da=\dfrac{-\frac23}{\frac89}=-\dfrac34

So we end up with

\log_dabc=-\dfrac34-\dfrac23+\dfrac12=-\dfrac{11}{12}

###

Another way to do this:

\log_ab=\dfrac89\implies a^{8/9}=b\implies a=b^{9/8}

\log_bc=-\dfrac34\implies b^{-3/4}=c\implies b=c^{-4/3}

\log_cd=2\implies c^2=d\implies\log_dc^2=1\implies\log_dc=\dfrac12

Then

abc=(c^{-4/3})^{9/8}c^{-4/3}c=c^{-11/6}

So we have

\log_dabc=\log_dc^{-11/6}=-\dfrac{11}6\log_dc=-\dfrac{11}6\cdot\dfrac12=-\dfrac{11}{12}

4 0
3 years ago
Which figure is the image produced by applying the composition T 0,3 o R0,90 to figure R?
Lyrx [107]

We are given original image R.

It is being translated by (0,3) first and then rotated by a positive angle 90 degrees.

Translation by (0,3) represents (x,y) --> (x, y+3) rule.

Positive 90 degree rotation represents, counterclockwise rotation.

The rule for counterclockwise rotation is (x,y) --> (-y,x).

Therefore, final rule for would be

(x,y) --> ( -y,x+3 )

Let us take a coordinate of R on y-axis as (0,-4).

Now if we apply rule (x,y) --> ( -y,x+3 ) we get

(0,-4)  --> (-(-4), 0+3) = (4,3).

Let us check the figure with coordinate (4,3).

We can clearly see that Figure H has transformed coordinate (4,3).

<h3>Therefore, correct option is first option A. figure H.</h3>
8 0
3 years ago
Other questions:
  • A pair of designer sunglasses was marked up 10% and is now selling for $165.00. What was the original price of the sunglasses?
    15·2 answers
  • Julie's overtime pay is $7 an hour more than her regular pay. She worked 6 hours at her regular wage and 4 hours at her overtime
    7·1 answer
  • Find all the factors of 125
    5·1 answer
  • Find the distance of a chord 8cm long from the centre of a circle radius 5cm​
    12·1 answer
  • Liz flips a coin 60 times. The coin lands heads up 18 times and tails up 42 times. Complete each
    11·1 answer
  • HELP ASAP PLSSS
    14·1 answer
  • Need help<br><br> w ÷ 7 and one-half for w = 5 and five-sixths
    12·1 answer
  • Write the numbers in order from least to greatest. 0.3.0.5.-1.6.-1.35​
    6·1 answer
  • Which
    10·1 answer
  • Help with Area of a sector
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!