1. C- 446
2. A- 778
3. B- 400
4. A- 11
Answer:
2.32 s
Explanation:
Using the equation of motion,
s = ut+g't²/2............................ Equation 1
Where s = distance, u = initial velocity, g' = acceleration due to gravity of the moon, t = time.
Note: Since Onur drops the basket ball from a height, u = 0 m/s
Then,
s = g't²/2
make t the subject of the equation,
t = √(2s/g')...................... Equation 2
Given: s = 10 m, g' = 3.7 m/s²
Substitute this value into equation 2
t = √(2×10/3.7)
t = √(20/3.7)
t = √(5.405)
t = 2.32 s.
Answer:
It will apply the greatest pressure of an area of 1.
Explanation:
To find pressure use the formula P = F/A
P = 100/1
P = 100
If you take a look at the definition of work, you will get this formula:
Answer:
we have to find out the critical resolved shear stress. As it it given in the question
Ф = 28.1°and the possible values for λ are 62.4°, 72.0° and 81.1°.
a) Slip will occur in the direction where cosФ cosλ are maximum. Cosine for all possible λ values are given as follows.
cos(62.4°) = 0.46
cos(72.0°) = 0.31
cos(81.1°) = 0.15
Thus, the slip direction is at the angle of 62.4° along the tensile axis.
b) now the critical resolved shear stress can be find out by the following equation.
τ
= σ
( cosФ cosλ)
now by putting values,
= (1.95MPa)[ cos(28.1) cos(62.4)] = 0.80 MPa (114 Psi) 7.23