First, you have to find the equation of the perpendicular bisector of this given line.
to do that, you need the slope of the perpendicular line and one point.
Step 1: find the slope of the given line segment. We have the two end points (10, 15) and (-20, 5), so the slope is m=(15-5)/(10-(-20))=1/3
the slope of the perpendicular line is the negative reciprocal of the slope of the given line, m=-3/1=-3
step 2: find the middle point: x=(-20+10)/2=-5, y=(15+5)/2=10 (-5, 10)
so the equation of the perpendicular line in point-slope form is (y-10)=-3(x+5)
now plug in all the given coordinates to the equation to see which pair fits:
(-8, 19): 19-10=9, -3(-8+5)=9, so yes, (-8, 19) is on the perpendicular line.
try the other pairs, you will find that (1,-8) and (-5, 10) fit the equation too. (-5,10) happens to be the midpoint.
4.4 is the answer for that problem 17.6 divided by 4
Step by step. :)
STEP
1
:
Equation at the end of step 1
0 - 7n • (n - 7) = 0
STEP
2
:
Equation at the end of step 2
-7n • (n - 7) = 0
STEP
3
:
Theory - Roots of a product
3.1 A product of several terms equals zero.
When a product of two or more terms equals zero, then at least one of the terms must be zero.
We shall now solve each term = 0 separately
In other words, we are going to solve as many equations as there are terms in the product
Any solution of term = 0 solves product = 0 as well.
Solving a Single Variable Equation:
3.2 Solve : -7n = 0
Multiply both sides of the equation by (-1) : 7n = 0
Divide both sides of the equation by 7:
n = 0
Solving a Single Variable Equation:
3.3 Solve : n-7 = 0
Add 7 to both sides of the equation :
n = 7
This is what i got! if i’m wrong i’m so sorry
but i tried. have a amazing day☺️☺️
Answer: magnesium >potassium hope it helps
The correct answer to your question is 6, option B.
The degree of a polynomial is the highest exponent or power of the variable that is involved in the expression. In the above question we have only one variable which is x, and from the given terms we can see that the highest power of x is 6. So the degree of polynomial is 6. The degree of polynomials helps us to know about the end behavior of the graph.