Answer:
b) 0.2961
c) 0.2251
d) Mean = 11.25, Standard deviation = 1.667
Step-by-step explanation:
We are given the following information:
We treat trucks undergoing a brake inspection passin as a success.
P( trucks undergoing a brake inspection passes the test) = 75% = 0.75
a) Conditions for binomial probability distribution
- There are n independent trial.
- Each trial have a success probability p
- The probability of success is same for all trials.
Then the number of trucks undergoing a brake inspection follows a binomial distribution, where
where n is the total number of observations, x is the number of success, p is the probability of success.
Now, we are given n = 15
b) P(proportion of groups will between 8 and 10 trucks pass the inspection)
We have to evaluate:
c) P( exactly 3 trucks fail the inspection)
p = 0.25
d) Mean and standard deviation

Answer= 70.7 meters.
Step-by-step explanation:
We have been given that Elise walks diagonally from one corner of a square plaza to another. Each side of the plaza is 50 meters.
Since we know that diagonal of a square is product of side length of square and . So we will find diagonal of our given square plaza by multiplying 50 by .
Therefore, diagonal distance across the plaza is 70.7 meters.
As points, x-intercepts take the form

, so to find the intercepts we can set

and solve for

.

From the first equation alone, we already know that

is a solution, which means one intercept is

.
The second equation gives

so that the second intercept occurs at

.
So if

and

, we have

, giving C as the answer.
we are given

Firstly, we will simplify it


At x=5.5:
we can plug x=5.5


At x=5.1:
we can plug x=5.1


At x=5.05:
we can plug x=5.05


At x=5.01:
we can plug x=5.01


At x=5.005:
we can plug x=5.005


At x=5.001:
we can plug x=5.001


At x=4.9:
we can plug x=4.9


At x=4.95:
we can plug x=4.95


At x=4.99:
we can plug x=4.99


At x=4.995:
we can plug x=4.995


At x=4.999:
we can plug x=4.999

