1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vfiekz [6]
3 years ago
14

Please help me with this 10 points​

Mathematics
1 answer:
kiruha [24]3 years ago
4 0

Answer:

i couldnt see the first 2 good.

3. exact form= 58/15 decimal form= 3.86 mixed # form= 3 13/15

4. exact form= 13/8 decimal form = 1.625 mixed numbers 1 5/8

5.convert thw mixed number to improper fractions, then find the LCD and combine...-8

You might be interested in
Is 0 an integer ?<br> It wont let me post without making it longer
lina2011 [118]

Yes, it is. You may prove it using something like this: 1 is an integer. 1-1 is a difference between integers. A difference between integers returns an integer, so 0 is an integer.

7 0
3 years ago
Determine the measure of each segment then indicate whether the statements are true or false
kupik [55]

Answer:

d_{AB}\ne d_{JK}

d_{AB}\ne \:d_{GH}

d_{GH}\ne \:d_{JK}

Therefore,

Option (A) is false

Option (B) is false

Option (C) is false

Step-by-step explanation:

Considering the graph

Given the vertices of the segment AB

  • A(-4, 4)
  • B(2, 5)

Finding the length of AB using the formula

d_{AB}\:=\:\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}

        =\sqrt{\left(2-\left(-4\right)\right)^2+\left(5-4\right)^2}

         =\sqrt{\left(2+4\right)^2+\left(5-4\right)^2}

         =\sqrt{6^2+1}

         =\sqrt{36+1}

        =\sqrt{37}

d_{AB}\:=\sqrt{37}

d_{AB}=6.08 units        

Given the vertices of the segment JK

  • J(2, 2)
  • K(7, 2)

From the graph, it is clear that the length of JK = 5 units

so

d_{JK}=5 units

Given the vertices of the segment GH

  • G(-5, -2)
  • H(-2, -2)

Finding the length of GH using the formula

d_{GH}\:=\:\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}

         =\sqrt{\left(-2-\left(-5\right)\right)^2+\left(-2-\left(-2\right)\right)^2}

          =\sqrt{\left(5-2\right)^2+\left(2-2\right)^2}

          =\sqrt{3^2+0}

           =\sqrt{3^2}

\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0

d_{GH}\:=\:3 units

Thus, from the calculations, it is clear that:

d_{AB}=6.08  

d_{JK}=5

d_{GH}\:=\:3

Thus,

d_{AB}\ne d_{JK}

d_{AB}\ne \:d_{GH}

d_{GH}\ne \:d_{JK}

Therefore,

Option (A) is false

Option (B) is false

Option (C) is false

8 0
3 years ago
Can somebody help. 7 out of 10 is what percent?
Otrada [13]

Answer:

70%

Step-by-step explanation:

Multiply by ten and you get your percent

3 0
3 years ago
Read 2 more answers
In great detail, with full work done out, please find x<br> 1 + x = 2
kenny6666 [7]

Answer:

x = 1

Step-by-step explanation:

1 + x = 2

Subtract 1 form both sides,

1 + x - 1 = 2 - 1

       x  = 1

4 0
3 years ago
Evaluate the triple integral ∭EzdV where E is the solid bounded by the cylinder y2+z2=81 and the planes x=0,y=9x and z=0 in the
dem82 [27]

Answer:

I = 91.125

Step-by-step explanation:

Given that:

I = \int \int_E \int zdV where E is bounded by the cylinder y^2 + z^2 = 81 and the planes x = 0 , y = 9x and z = 0 in the first octant.

The initial activity to carry out is to determine the limits of the region

since curve z = 0 and y^2 + z^2 = 81

∴ z^2 = 81 - y^2

z = \sqrt{81 - y^2}

Thus, z lies between 0 to \sqrt{81 - y^2}

GIven curve x = 0 and y = 9x

x =\dfrac{y}{9}

As such,x lies between 0 to \dfrac{y}{9}

Given curve x = 0 , x =\dfrac{y}{9} and z = 0, y^2 + z^2 = 81

y = 0 and

y^2 = 81 \\ \\ y = \sqrt{81}  \\ \\  y = 9

∴ y lies between 0 and 9

Then I = \int^9_{y=0} \int^{\dfrac{y}{9}}_{x=0} \int^{\sqrt{81-y^2}}_{z=0} \ zdzdxdy

I = \int^9_{y=0} \int^{\dfrac{y}{9}}_{x=0} \begin {bmatrix} \dfrac{z^2}{2} \end {bmatrix}    ^ {\sqrt {{81-y^2}}}_{0} \ dxdy

I = \int^9_{y=0} \int^{\dfrac{y}{9}}_{x=0} \begin {bmatrix}  \dfrac{(\sqrt{81 -y^2})^2 }{2}-0  \end {bmatrix}     \ dxdy

I = \int^9_{y=0} \int^{\dfrac{y}{9}}_{x=0} \begin {bmatrix}  \dfrac{{81 -y^2} }{2} \end {bmatrix}     \ dxdy

I = \int^9_{y=0}  \begin {bmatrix}  \dfrac{{81x -xy^2} }{2} \end {bmatrix} ^{\dfrac{y}{9}}_{0}    \ dy

I = \int^9_{y=0}  \begin {bmatrix}  \dfrac{{81(\dfrac{y}{9}) -(\dfrac{y}{9})y^2} }{2}-0 \end {bmatrix}     \ dy

I = \int^9_{y=0}  \begin {bmatrix}  \dfrac{{81 \  y -y^3} }{18} \end {bmatrix}     \ dy

I = \dfrac{1}{18} \int^9_{y=0}  \begin {bmatrix}  {81 \  y -y^3}  \end {bmatrix}     \ dy

I = \dfrac{1}{18}  \begin {bmatrix}  {81 \ \dfrac{y^2}{2} - \dfrac{y^4}{4}}  \end {bmatrix}^9_0

I = \dfrac{1}{18}  \begin {bmatrix}  {40.5 \ (9^2) - \dfrac{9^4}{4}}  \end {bmatrix}

I = \dfrac{1}{18}  \begin {bmatrix}  3280.5 - 1640.25  \end {bmatrix}

I = \dfrac{1}{18}  \begin {bmatrix}  1640.25  \end {bmatrix}

I = 91.125

4 0
3 years ago
Other questions:
  • Please answer this question correctly! 20 points and brainliest to the correct answer!!
    9·1 answer
  • What is the GREATEST COMMON FACTOR of 20x2 , 10x , and 15?
    11·2 answers
  • A writing workshop enrolls novelists and poets in a ratio of 5 to 3. There are 24 people at the workshop. How many novelists are
    8·1 answer
  • Which best describe the meaning of this function notation ? Cost(weight)
    9·2 answers
  • WHAT IS INSIDE QRS <br> HELP ME NOW PLS
    7·2 answers
  • Help me ASAP I’ll mark you as a BL Question attached below
    14·1 answer
  • How many centimeters does it grow Bamboo grows 91 centimeters per day. per hour? (GIVING BRAINLIEST)​
    15·2 answers
  • Estimate 1299+13,522 +6424 by first rounding each number to the nearest thousand.
    8·2 answers
  • Exterior angle theorem
    14·1 answer
  • Factor the binomial 9t to second power,-4 =
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!