Answer:
The probability that a student arriving at the ATM will have to wait is 67%.
Step-by-step explanation:
This can be solved using the queueing theory models.
We have a mean rate of arrival of:

We have a service rate of:

The probability that a student arriving at the ATM will have to wait is equal to 1 minus the probability of having 0 students in the ATM (idle ATM).
Then, the probability that a student arriving at the ATM will have to wait is equal to the utilization rate of the ATM.
The last can be calculated as:

Then, the probability that a student arriving at the ATM will have to wait is 67%.
Answer:

Step-by-step explanation:
Remember when you divide fractions, you need to get the reciprocal of the divisor and multiply. So your first simplification would be:

Next we factor what we can so we can further simplify the rest of the equation:

We can now cancel out (x+2)

Next we factor out even more:

We cancel out x-4 and reduce the 3 and 6 into simpler terms:

And we can now simplify it to:

Answer:
use logarithms
Step-by-step explanation:
Taking the logarithm of an expression with a variable in the exponent makes the exponent become a coefficient of the logarithm of the base.
__
You will note that this approach works well enough for ...
a^(x+3) = b^(x-6) . . . . . . . . . . . variables in the exponents
(x+3)log(a) = (x-6)log(b) . . . . . a linear equation after taking logs
but doesn't do anything to help you solve ...
x +3 = b^(x -6)
There is no algebraic way to solve equations that are a mix of polynomial and exponential functions.
__
Some functions have been defined to help in certain situations. For example, the "product log" function (or its inverse) can be used to solve a certain class of equations with variables in the exponent. However, these functions and their use are not normally studied in algebra courses.
In any event, I find a graphing calculator to be an extremely useful tool for solving exponential equations.