Jessica is doubling a recipe that calls for 1 1/2 cups of milk. How many cups of milk in total does she need?
2 x 1 1/2 = 3
She needs 3 cups of milk in total.
Use the GCF of the terms to write the expression as the product of two factors with integer coefficients.
-2x3 - 4x2 + 4x
Answer:
Step-by-step explanation:
We'll take this step by step. The equation is
![8-3\sqrt[5]{x^3}=-7](https://tex.z-dn.net/?f=8-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-7)
Looks like a hard mess to solve but it's actually quite simple, just do one thing at a time. First thing is to subtract 8 from both sides:
![-3\sqrt[5]{x^3}=-15](https://tex.z-dn.net/?f=-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-15)
The goal is to isolate the term with the x in it, so that means that the -3 has to go. Divide it away on both sides:
![\sqrt[5]{x^3}=5](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E3%7D%3D5)
Let's rewrite that radical into exponential form:

If we are going to solve for x, we need to multiply both sides by the reciprocal of the power:

On the left, multiplying the rational exponent by its reciprocal gets rid of the power completely. On the right, let's rewrite that back in radical form to solve it easier:
![x=\sqrt[3]{5^5}](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B3%5D%7B5%5E5%7D)
Let's group that radicad into groups of 3's now to make the simplifying easier:
because the cubed root of 5 cubed is just 5, so we can pull it out, leaving us with:
which is the same as:
![x=5\sqrt[3]{25}](https://tex.z-dn.net/?f=x%3D5%5Csqrt%5B3%5D%7B25%7D)
Answer:

Step-by-step explanation:
Let M ( 9 , -5 ) be ( x₁ , y₁ ) and N ( - 11 , 10 ) be ( x₂ , y₂ )
<u>Finding</u><u> </u><u>the </u><u>distance </u><u>between</u><u> </u><u>these</u><u> </u><u>points</u>








Hope I helped!
Best regards! :D
Answer:
- arc BF = 76°
- ∠M = 31°
- ∠BGE = 121°
- ∠MFB = 111°
Step-by-step explanation:
(a) ∠FBM is the complement of ∠FBC, so is ...
∠FBM = 90° -52° = 38°
The measure of arc BF is twice this angle, so is ...
arc BF = 2∠FBM = 2(38°)
arc BF = 76°
__
(b) ∠M is half the difference between the measures of arcs BE and BF, so is ...
∠M = (1/2)(138° -76°) = 62°/2
∠M = 31°
__
(c) arc FC is the supplement to arc BF, so has measure ...
arc FC = 180° -arc BF = 180° -76° = 104°
∠BGE is half the sum of arcs BE and FC, so is ...
∠BGE = (1/2)(arc BE +arc FC) = (138° +104°)/2
∠BGE = 121°
__
(d) ∠MFB is the remaining angle in ∆MFB, so has measure ...
∠MFB = 180° -∠M -∠FBM = 180° -31° -38°
∠MFB = 111°