Yes, you can grow plants in just water. when you do grow them in just water there have to be neutrinos added to the water for the plant to thrive. hope this helped let me know if the answer was correct
Mutations present permanent and heritable changes in the genome. We distinguish gene and chromosome mutations. Mutations in the level of genes are called point mutations because only one to several nucleotides are changed. These processes are known as deletion, insertion, and substitution. Deletion presents a loss of nucleotides which changes DNA sequence. When new nucleotides are embedded in the DNA chain, it is known as insertion. Substitution implies the process where new nucleotides are inserted while the ones that were present in that specific spot in a DNA molecule are deleted.
Mutations can also appear in chromosomes altering their number and structure. There are four types of mutations - deletion, duplication, inversion, and translocation. In deletion, a whole or one part of a chromosome is lost. Duplication presents an extra copy of a whole or one part of a chromosome. In an inversion, parts of a chromosome change order, while in translocation a part of one chromosome detaches and then connects to another.
hope this helps
Answer:
The next generation average time to flowering will be 98 days.
Explanation:
Before answering the question, we need to know a few concepts.
- Artificial selection is the selecting practice of a specific group of organisms in a population -that carry the traits of interest- to be the parents of the following generations.
- Parental individuals carrying phenotypic values of interest are selected from the whole population. These parents interbreed, and a new generation is produced.
- The selection differential, SD, is the difference between the mean value of the trait in the population (X₀) and the mean value of the parents, (Xs). So,
SD = Xs - X₀
- Heritability in the narrow-sense, h², is the genetic component measure to which additive genetic variance contributes. The heritability might be used to determine how the population will respond to the selection done, R.
h² = R/SD
- The response to selection (R) refers to the metric value gained or lost from the cross between the selected parents. R can be calculated by multiplying the heritability h², with the selection differential, SD.
R = h²SD
R also equals the difference between the new generation phenotypic value (X₁) and the original population phenotypic value (X₀),
R = X₀ - X₁
-------------------------------------------------------------------------------------------------------------
Now that we know these concepts and how to calculate them, we can solve the proposed problem.
<u>Available data: </u>
- trying to decrease the maturation time in a population of sunflowers.
- the population mean time to flower is 100 days → X₀
- Chosen parental Plants mean flowering time is 90 days → Xs
- the narrow-sense heritability for flowering time is 0.2 → h²
According to what we sow previously, we need to find out the value of X₁, which reflects the next generation average time to flowering.
- We know that R = X₁ - X₀, so we need to clear this formula to calculate X₁
X₁ = R + X₀
We already know that X₀ = 100 days,
Now we need to calculate R.
We know that h² = 0.2,
Now we need to calculate SD
Xs = 90 days → Parentals media flowering time
X₀ = 100 → Population media flowering time
SD = Xs - X₀
SD = 90 - 100
SD = - 10 days
Knowing this, we can calculate R
o h² = 0.2
o SD = - 10
R = 0.2 x (-10)
R = - 2
- Finally, once we know the R-value we can calculate the X₁ value
X₁ = R + X₀
X₁ = - 2 + 100
X₁ = 98
Systematics is the study of the units of biodiversity. Systematics differs from ecology in that the latter is concerned with the interactions of individuals (and therefore species) in a particular time.