Supposse that the distance from the point
to the point
is equal to the distance from
to the point
. Then, by the formula of the distnace we must have

cancel the square root and the
's, and then expand the parenthesis to obtain

then, simplifying we obtain

therfore we must have

this means that the points satisfying the propertie must have first component equal to 5. So we can give a lot of examples of such points:
. The set of this points give us a straight line and the points (3,0) and (7,0) are symmetric with respect to this line.
A = LW
A = 72
L = W + 1
72 = W(W + 1)
72 = W^2 + W
W^2 + W - 72 = 0
(W + 9)(W - 8) = 0
W + 9 = 0
W = -9......extraneous solution...does not work here
W - 8 = 0
W = 8 <==
L = W + 1
L = 8 + 1
L = 9
so the width (W) is 8 ft and the Length is 9 ft
Answer:
20/3
Step-by-step explanation:
Answer:
The correct options are;
1) Write tan(x + y) as sin(x + y) over cos(x + y)
2) Use the sum identity for sine to rewrite the numerator
3) Use the sum identity for cosine to rewrite the denominator
4) Divide both the numerator and denominator by cos(x)·cos(y)
5) Simplify fractions by dividing out common factors or using the tangent quotient identity
Step-by-step explanation:
Given that the required identity is Tangent (x + y) = (tangent (x) + tangent (y))/(1 - tangent(x) × tangent (y)), we have;
tan(x + y) = sin(x + y)/(cos(x + y))
sin(x + y)/(cos(x + y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y)) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
∴ tan(x + y) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
The distance the ships traveled are like the legs of a triangle and the question wants to know the hypotenuse. To find the hypotenuse, use the pythagorean theorem. this is a^2 + b^2 = c^2, with a and b being the legs and c being the <span>hypotenuse.
</span>Plug in known values:
84^2 + 62^2 = c^2
Solve:
84^2 = 7056
62^2 = 3844
7056 + 3844 = c^2
7056 + 3844 = 10900
10900 = c^2
Now you just need to isolate c by finding the square root of both sides.
√10900 = 104.403
√c^2 = c
So c = 104.403, or just 104.40 when rounded to the nearest tenth.
And if c is 104.40, then that means the hypotenuse is 104.40.
And all of that basically means that the distance between the ships is 104.40 miles.