The key is Esther travelled the same distance - x - in both her morning and evening commute.
45(time she took in the morning, or p) = x
30(time she took in the evening, or q) = x
Therefore 45(p) = 30(q), or divide both sides by 5 and get 9(p) = 6(q). I know you can divide it further, but these numbers are small enough and it's not worth the time.
Since the whole trip took an hour, (p + q) = 60min, and so, p = 60-q.
Therefore 9(60-q) = 6q or 540-9q = 6q. So 540 = 15q, which makes q = 36. If q = 36, then by (p+q)=60, p (the time she took in the morning) must equal 24.
45 miles per hour, her speed in the morning, times (24/60) hours, her time, makes 18 miles travelled in the morning. If you check, 30 miles per hour times (36/60) hours also makes 18 miles in the evening.
<span>Hope that makes a little sense. And I also hope it's right</span>
Answer:
The third option listed: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)
Step-by-step explanation:
We start by writing all the numerical factors inside the qubic roots in factor form (and if possible with exponent 3 so as to easily identify what can be extracted from the root):
![7\sqrt[3]{2x} -3\sqrt[3]{16x} -3\sqrt[3]{8x} =\\=7\sqrt[3]{2x} -3\sqrt[3]{2^32x} -3\sqrt[3]{2^3x} =\\=7\sqrt[3]{2x} -3*2\sqrt[3]{2x} -3*2\sqrt[3]{x}=\\=7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B16x%7D%20-3%5Csqrt%5B3%5D%7B8x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%5Csqrt%5B3%5D%7B2%5E32x%7D%20-3%5Csqrt%5B3%5D%7B2%5E3x%7D%20%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-3%2A2%5Csqrt%5B3%5D%7B2x%7D%20-3%2A2%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
And now we combine all like terms (notice that the only two terms we can combine are the first two, which contain the exact same radical form:
![7\sqrt[3]{2x} -6\sqrt[3]{2x} -6\sqrt[3]{x}=\\=\sqrt[3]{2x} -6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D%20%20-6%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%3D%5C%5C%3D%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D)
Therefore this is the simplified radical expression: ![\sqrt[3]{2x} -6\sqrt[3]{x}\\](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%20-6%5Csqrt%5B3%5D%7Bx%7D%5C%5C)
Answer:
length = 13
Step-by-step explanation:
<u>Given</u>:
Given that the graph OACE.
The coordinates of the vertices OACE are O(0,0), A(2m, 2n), C(2p, 2r) and E(2t, 0)
We need to determine the midpoint of EC.
<u>Midpoint of EC:</u>
The midpoint of EC can be determined using the formula,

Substituting the coordinates E(2t,0) and C(2p, 2r), we get;

Simplifying, we get;

Dividing, we get;

Thus, the midpoint of EC is (t + p, r)
Hence, Option A is the correct answer.
Over fort fort core cots puts stone below