Hi there!

To find the indefinite integral, we must integrate by parts.
Let "u" be the expression most easily differentiated, and "dv" the remaining expression. Take the derivative of "u" and the integral of "dv":
u = 4x
du = 4
dv = cos(2 - 3x)
v = 1/3sin(2 - 3x)
Write into the format:
∫udv = uv - ∫vdu
Thus, utilize the solved for expressions above:
4x · (-1/3sin(2 - 3x)) -∫ 4(1/3sin(2 - 3x))dx
Simplify:
-4x/3 sin(2 - 3x) - ∫ 4/3sin(2 - 3x)dx
Integrate the integral:
∫4/3(sin(2 - 3x)dx
u = 2 - 3x
du = -3dx ⇒ -1/3du = dx
-1/3∫ 4/3(sin(2 - 3x)dx ⇒ -4/9cos(2 - 3x) + C
Combine:

Answer:
x = 7 and y = 17
Step-by-step explanation:
16x + 9x + 5 = 180 cuz they are supplementary
25x = 175
x = 7
We also know that 16x + 4y = 180
so 16(7) + 4y = 180, so 4y = 180 - 112, so 4y = 68. y = 17
hope this makes sense
Answer:
1st Graph
Step-by-step explanation:
Edge2020